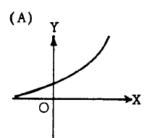
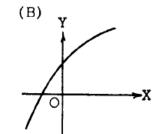
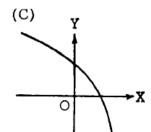
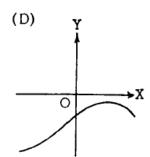
DUE DATE: Name

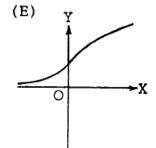
Directions:


- Read each problem carefully and use your knowledge of calculus to determine your answer.
- In order to receive FULL CREDIT you must either SHOW ALL WORK or EXPLAIN how you got your answer!! PLEASE NOTE: A multiple choice answer alone without any work will only receive half credit.
- - (A) 1 (B) $\frac{3}{2}$
- (C) 2 (D) 4
- (E) 6

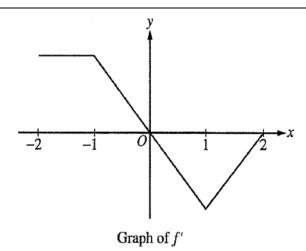

- 2) If $f(x) = \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}$, for $x \ne 2$, and if f is continuous at x = 2, then k = 2
- (A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) 1 (E) $\frac{7}{5}$


- 3) If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at x = 1 is


- (A) -2 (B) 0 (C) 2 (D) 4 (E) not defined


4) If y is a function x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of y = f(x)?

5)


$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

- Let f be the function given above. Which of the following statements are true about f?
 - I. $\lim_{x\to 3} f(x)$ exists.
 - II. f is continuous at x = 3.
 - III. f is differentiable at x = 3.
- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

- For what value of x does the function $f(x) = (x-2)(x-3)^2$ have a relative maximum?
- (A) -3 (B) $-\frac{7}{3}$ (C) $-\frac{5}{2}$ (D) $\frac{7}{3}$ (E) $\frac{5}{2}$

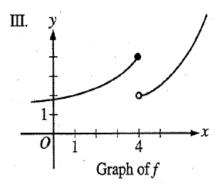
- 7) If $f(x) = \sin\left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be $\,c\,?\,$
- (A) $\frac{2\pi}{3}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{6}$ (D) π (E) $\frac{3\pi}{2}$

8)

The graph of f', the derivative of the function f, is shown above. Which of the following statements is true about f?

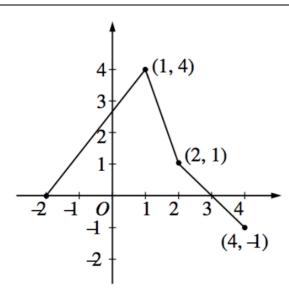
- (A) f is decreasing for $-1 \le x \le 1$.
- (B) f is increasing for $-2 \le x \le 0$.
- (C) f is increasing for $1 \le x \le 2$.
- (D) f has a local minimum at x = 0.
- (E) f is not differentiable at x = -1 and x = 1.

- 9) If $f(x) = (x-1)^2 \sin x$, then f'(0) =
 - (A) -2 (B) -1
- (C) 0
- (D) 1
- (E) 2


10) For which of the following does $\lim_{x\to 4} f(x)$ exist?

I.

Graph of f


II.

Graph of f

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

11)

The graph of the function f, consisting of three line segments, is shown above. Let

$$g(x) = \int_{1}^{x} f(t) dt.$$

(a) Compute g(4) and g(-2).

(b) Find the instantaneous rate of change of g, with respect to x, at x = 1.

(c) Find the absolute minimum value of g on the closed interval [-2,4]. Justify your answer.

(d) The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

- 12) Consider the graph of $f(x) = x^4 6x^2$.
 - a) Find the relative maxima and minima (both x and y coordinates).

b) Find the coordinates of the point(s) of inflection.

c) Determine the interval(s) on which the function is increasing.

d) Determine the interval(s) on which the function is concave up.