Name \qquad DUE DATE:

Directions:

- Read each problem carefully and use your knowledge of calculus to determine your answer.
- In order to receive FULL CREDIT you must either SHOW ALL WORK or EXPLAIN how you got your answer!! PLEASE NOTE: A multiple choice answer alone without any work will only receive half credit.

1) Let f be the function defined by the following.

$$
f(x)=\left\{\begin{array}{cl}
\sin x, & x<0 \\
x^{2}, & 0 \leq x<1 \\
2-x, & 1 \leq x<2 \\
x-3, & x \geq 2
\end{array}\right.
$$

For what values of x is f NOT continuous?
(A) 0 only
(B) 1 only
(C) 2 only
(D) 0 and 2 only
(E) 0,1, and 2
2) A particle moves along the x-axis so that at any time $t \geqq 0$ its position is given by $x(t)=t^{3}-3 t^{2}-9 t+1$. For what values of t is the particle at rest?
(A) No values
(B) 1 only
(C) 3 only
(D) 5 only
(E) 1 and 3
3) $\int_{0}^{1}(3 x-2)^{2} d x=$
(A) $-\frac{7}{3}$
(B) $-\frac{7}{9}$
(C) $\frac{1}{9}$
(D) 1
(E) 3
4)

The figure above shows the graph of f^{\prime}, the derivative of the function f, on the open interval $-7<x<7$. If f^{\prime} has four zeros on $-7<x<7$, how many relative maxima docs f have on $-7<x<7$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Five
5) If $\lim _{x \rightarrow 3} f(x)=7$, which of the following must be true?
I. f is continuous at $x=3$
II. f is differentiable at $x=3$
III. $f(3)=7$
(A) None
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
6) If $\int_{1}^{10} f(x) d x=4$ and $\int_{10}^{3} f(x) d x=7$, then $\int_{1}^{3} f(x) d x=$
(A) 11
(B) 3
(C) -3
(D) 28
(E) none of these
7) If $x+2 x y-y^{2}=2$, then at the point (1,1), $\frac{d y}{d x}$ is
(A) $-\frac{1}{2}$
(B) $\frac{3}{2}$
(C) 0
(D) -3
(E) undefined
8)

The graph of a piecewise-linear function f, for $-1 \leq x \leq 4$, is shown above. What is the value of $\int_{-1}^{4} f(x) d x ?$
(A) 1
(B) 2.5
(C) 4
(D) 5.5
(E) 8
9)

x	-4	-3	-2	-1	0	1	2	3	4
$g^{\prime}(x)$	2	3	0	-3	-2	-1	0	3	2

The derivative g^{\prime} of a function g is continuous and has exactly two zeros. Selected values of g^{\prime} are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals?
(A) $-2 \leq x \leq 2$ only
(B) $-1 \leq x \leq 1$ only
(C) $x \geq-2$

What is the x-coordinate of the point of inflection on the graph of $y=\frac{1}{3} x^{3}+5 x^{2}+24$?
(E) $x \leq-2$ or $x \geq 2$
10) What is the x-coordinate of the point of inflection on the graph of $y=\frac{1}{3} x^{3}+5 x^{2}+24 ?$
(A) -10
(B) -6
(C) 0
(D) 5
(E) none of these
11) Let f be the function given by $f(x)=\sqrt{x^{4}-16 x^{2}}$.
(a) Find the domain of f.
(b) Describe the symmetry, if any, of the graph of f.
(c) Find $f^{\prime}(x)$.
(d) Find the slope of the line normal to the graph of f at $x=5$.
12) A particle moves along the x-axis in such a way that its position at time t is given by $x=3 t^{4}-16 t^{3}+24 t^{2}$ for $-5 \leq t \leq 5$.
(a) Determine the velocity and acceleration of the particle at time t.
(b) At what values of t is the particle at rest?
(c) At what values of t does the particle change direction?
(d) What is the velocity when the acceleration is first zero?

