DUE DATE: Name

Directions:

Read each problem carefully and use your knowledge of calculus to determine your answer.

• In order to receive FULL CREDIT you must either SHOW ALL WORK or EXPLAIN how you got your answer!! PLEASE NOTE: A multiple choice answer alone without any work will only receive half credit.

Evaluate $\int x \cos 2x \, dx$.

(A)
$$\frac{1}{2}x\cos 2x - \frac{1}{4}\sin 2x + C$$

(B)
$$\frac{1}{2}x\sin 2x - \frac{1}{4}\cos 2x + C$$

(C)
$$\frac{1}{2}x \sin 2x - \frac{1}{4}\sin 2x + C$$

(D)
$$\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x + C$$

(E)
$$\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C$$

Let $f(x) = \begin{cases} 2x - 5, & \text{for } x \le 3\\ \sqrt{x + 1}, & \text{for } x > 3 \end{cases}$

Find
$$\int_0^8 f(x)dx$$
.

(A) 24 (B) $\frac{45}{2}$ (C) $\frac{52}{3}$

(D) $\frac{20}{3}$

(E) $\frac{32}{3}\sqrt{2} - 2\sqrt{3}$

3)

The graph of the derivative of f is shown in the figure above. Which of the following could be the graph of f?

(A)

(C)

(D)

4)

$$\lim_{h \to 0} \frac{\tan\left(\frac{\pi}{3} + h\right) - \tan\frac{\pi}{3}}{h} =$$

- (A) 4 (B) $\sqrt{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{\sqrt{3}}{2}$

(E) $\frac{1}{2}$

5) Find
$$\lim_{x \to 1} \frac{\int_{1}^{x} e^{t^{2}} dt}{x^{2} - 1}$$
 is

6)
$$\int \frac{1}{x^2 - 6x + 8} dx =$$

- Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?
 - (A) -0.701
 - (B) -0.567
 - (C) -0.391
 - (D) -0.302
 - (E) -0.258
- 8) If $f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2 \\ x^2 \ln 2 & \text{for } 2 < x \le 4, \end{cases}$ then $\lim_{x \to 2} f(x)$ is
- (A) $\ln 2$ (B) $\ln 8$ (C) $\ln 16$
- (D) 4 (E) nonexistent

- 9) The line tangent to the graph of $y = x^3 3x^2 2x + 1$ at x = -1 will also intersect the curve at which of the following values of x?

- (A) x = 4 (B) x = 5 (C) x = 6 (D) x = 7
- (E) x = 8

- Assume that g'(x) = h(x) and $f(x) = x^2$. Which of the following expressions is equal to $\frac{d}{dx}f(g(x))$?

- (A) 2x g(x) (B) 2x h(x) (C) 2g(x) h(x) (D) f'(x) g(x) h(x) (E) $x^2 h(x) + 2x g(x)$

- 11) A particle is moving along the x-axis according to the equation $x(t) = 4t^2 - \sin 3t$ where x is given in feet and t is given in seconds. Find the acceleration at $t = \frac{\pi}{2}$.
 - $(A) -1 \text{ ft/sec}^2$
- (B) 5 ft/sec^2
- (C) 11 ft/sec^2 (D) 17 ft/sec^2 (E) $2\pi \text{ ft/sec}^2$

12) Find $\frac{dy}{dx}$ if $tany = (x - y)^2$

AP CALCULUS BC WEEKLY REVIEW #5