Name DUE DATE:

Directions:

Read each problem carefully and use your knowledge of calculus to determine your answer.

- In order to receive FULL CREDIT you must either SHOW ALL WORK or EXPLAIN how you got your answer!! PLEASE NOTE: A multiple choice answer alone without any work will only receive half credit.
- If $\frac{dy}{dx} = (x+3)e^{-2y}$, then which of the following is a possible expression for y?

(A)
$$\frac{1}{2} \ln (x^2 + 6x + 5)$$

(B)
$$\ln(x^2 + 6x - 4)$$

(C)
$$\frac{1}{2} \ln (x^2 + 6x) - 3$$

(D)
$$\frac{1}{2} \ln \left(\frac{1}{4} x^2 + \frac{3}{2} x \right)$$

(E)
$$\frac{1}{2} \ln (x^2 + 3x)$$

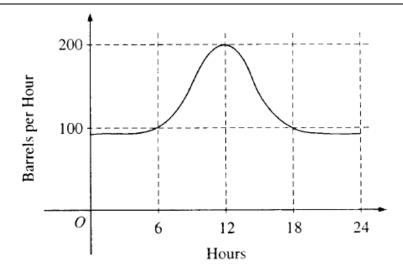
If $\frac{dy}{dx} = \sin x \cos^2 x$ and if y = 0 when $x = \frac{\pi}{2}$, what is the value of y when x = 0?

- 3) Find the values of x for which the graph of $y = xe^x$ is concave upward.
 - (A) x < -2 (B) x > -2 (C) x < -1 (D) x > -1 (E) x < 0

AP CALCULUS BC WEEKLY REVIEW #7

4) If f(x) = g(x) + 7 for $3 \le x \le 5$, then $\int_{3}^{5} [f(x) + g(x)] dx =$

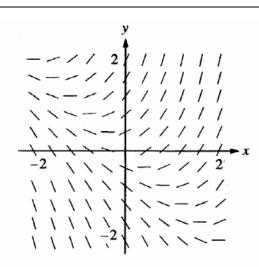
(A)
$$2\int_{3}^{5} g(x) dx + 7$$


(B)
$$2\int_{3}^{5} g(x) dx + 14$$

(C)
$$2\int_{3}^{5} g(x) dx + 28$$

(D)
$$\int_{3}^{5} g(x) dx + 7$$

(E)
$$\int_{3}^{5} g(x) dx + 14$$


5)

The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?

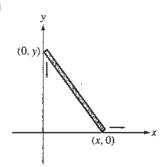
- (A) 500
- (B) 600
- (C) 2,400
- (D) 3,000
- (E) 4,800

6)

Shown above is a slope field for which of the following differential equations?

- (A) $\frac{dy}{dx} = 1 + x$ (B) $\frac{dy}{dx} = x^2$ (C) $\frac{dy}{dx} = x + y$ (D) $\frac{dy}{dx} = \frac{x}{y}$ (E) $\frac{dy}{dx} = \ln y$

 $\int_{1}^{e} \left(\frac{x^2 - 1}{x} \right) dx =$


- 8) Find the average rate of change of y with respect to x on the closed interval [0, 3] if $\frac{dy}{dx} = \frac{x}{x^2 + 1}$.
 - (A) $\frac{1}{6} \ln 10$ (B) $\frac{1}{6} \ln 3$
- (C) $\frac{1}{2} \ln 10$ (D) $\frac{1}{10}$ (E) $\frac{3}{10}$

9)

t (sec)	0	2	4	6
a(t) (ft/sec ²)	5	2	8	3

The data for the acceleration a(t) of a car from 0 to 6 seconds are given in the table above. If the velocity at t=0 is 11 feet per second, the approximate value of the velocity at t=6, computed using a left-hand Riemann sum with three subintervals of equal length, is

10)

A 15-foot ladder is leaning against a building as shown, so that the top of the ladder is at (0, y) and the bottom is at (x, 0). The ladder is falling because the ground is slippery; assume that $\frac{dy}{dt} = -12$ feet per second at the instant when x = 9 feet. Find $\frac{dx}{dt}$ at this instant.

- (A) 6 feet per second
- (B) 9 feet per second
- (C) 12 feet per second
- (D) 16 feet per second
- (E) 20 feet per second

11)	Let	v =	$2e^{\cos x}$	
	Lot	.,	20	•

Calculate
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

- 12) Given the curve $x + xy + 2y^2 = 6$.
 - (a) Find an expression for the slope of the curve at any point (x, y) on the curve.
 - (b) Write an equation for the line tangent to the curve at the point (2,1).
 - (c) Find the coordinates of all other points on this curve with slope equal to the slope at (2,1).

AP CALCULUS BC WEEKLY REVIEW #7