AP Calculus BC

Integration Review

1. If
$$\int_{1}^{10} f(x) dx = 4$$
 and $\int_{10}^{3} f(x) dx = 7$, then $\int_{1}^{3} f(x) dx = 6$

2. Evaluate each of the following integrals:

a)
$$\int_0^{\frac{\pi}{3}} \sin(3x) dx =$$

b)
$$\int_0^4 (2x+1)^{1/2} dx$$

c)
$$\int_{1}^{4} \frac{3}{x^2} dx$$

d)
$$\frac{1}{2} \int_{-6}^{0} e^{t/2} dt$$

e)
$$\int_{1}^{2} \frac{x-4}{x^2} dx$$

f)
$$\int_{1}^{2} \frac{x^2 - 1}{x + 1} dx =$$

g)
$$\int_{1}^{5} \frac{3}{x} dx =$$

3. Find dy/dx for each of the following:

a)
$$f(x) = 8x - x\sin x$$

b)
$$g(x) = 5lnx - \frac{1}{2}x^3$$

4. If
$$\int_0^k (2kx - x^2) dx = 18$$
, then $k =$

5. Find
$$\frac{d}{dx} \int_1^{x^2} \sqrt{1+t^3} dt$$
.

6. If $F(t) = \int_0^{2x} \cos(2\pi t) dt$, then $F'\left(\frac{1}{4}\right) =$

7. If g(2) = 8, where g'(x) is continuous, $\int_{-3}^{2} g'(x) = 5$, and $\int_{2}^{7} g'(x) = 11$, find the value of g(7) and g(-3)?

8. The acceleration of a particle at time t > 0 moving along the x - axis is $a(t) = t(3t - 2) ft/min^2$. If at t = 1 seconds the velocity, v(t) = 5 m/sec and the position, s(t) = 10 m, then what is s(2)?

9. Evaluate the indefinite integral: $\int (x^3 - 3x)^2 dx$

10. Find the average value for each of the following over the given interval.

a)
$$g(x) = \frac{1}{x}$$
; [1,3]

b)
$$y = sec^2 x$$
; $[0, \frac{\pi}{3}]$

11. A test plane flies in a straight line with positive velocity v(t), in miles per minute at time t minutes, where v is a differential function of t. Selected values of v(t) for 0 < t < 40 are shown in the table below.</p>

t (min)	0	5	10	15	20	25	30	35	40
v(t) (mpm)	7.0	9.2	9.5	7.0	4.5	2.4	2.4	4.3	7.3

- a. Use a midpoint Riemann sum with four subintervals of equal length and values from the table to approximate $\int_0^{40} v(t)dt$. Show the computations that lead to your answer. Using correct units explain the meaning of $\int_0^{40} v(t)dt$. in terms of the plane's flight.
- 12. The following table gives data from a two-hour trip. Use the table, with six equal subintervals, to get both a left and right Riemann sum approximations for the total distance traveled.

Time (min)	0	10	20	30	40	50	60	70	80	90	100	110	120
Speed(mph)	0	5	15	30	50	55	60	57	46	35	30	27	0

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x) = \int_{-3}^{x} f(t)dt$.

a) Find g(-5) and g(4).

b) Find all the values of x in the open interval (-5,4) at which g attains a relative minimum and maximum. Justify your answer.

c) Find the absolute minimum and maximum values of g on the closed interval [-5,4]. Justify your answer.

Answer Key:

1)	11

2) a)
$$\frac{2}{3}$$

b)
$$\frac{26}{3}$$

c)
$$\frac{9}{4}$$

d)
$$1 - \frac{1}{e^3}$$

e)
$$ln2 - 2$$

f)
$$\frac{1}{2}$$

3) a)
$$8 - \sin x - x \cos x$$

b)
$$\frac{5}{x} - \frac{3}{2}x^2$$

5)
$$2x\sqrt{1+x^6}$$

7)
$$g(7) = 19$$
; $g(-3) = 3$

8)
$$\frac{197}{12}$$

9)
$$\frac{x^7}{7} - \frac{6}{5}x^5 + 3x^3 + C$$

10) a)
$$\frac{1}{2}ln3$$

b)
$$\frac{3\sqrt{3}}{\pi}$$

- 11) 229 miles is the total distance that the test plane flies in 40 minutes.
- 12) left = 4020 ; right = 4020

13) a)
$$g(-5) = 0$$
; $g(4) = \frac{13-\pi}{2}$

- b) rel min at x = -4 with justification rel max at x = 3 with justification
- c) absolute min is -1 which occurs at x = -4 absolute max is $7 \frac{\pi}{2}$ which occurs at x = 3