Name Key DUE DATE: ____

Directions:

- Read each problem carefully and use your knowledge of mathematics to determine your answer.
- In order to receive FULL CREDIT you must either SHOW ALL WORK or EXPLAIN how you got your answer!! PLEASE NOTE: A multiple choice answer alone without any work will only receive half credit.

Question	Your Work/Explanation
1) Find the sum of $\sum_{n=1}^{5} \frac{4n+6}{10}$	4(1)+6 4(2)+6 4(3)+6 4(4)+6 4(5)+6
	1 + 14 + 18 + 22 + 26
	90 = 9
2) Find the exact value, in radians, of the real number θ between $(0,2\pi)$ where	
$cos\theta = -\frac{\sqrt{3}}{2}$ and $tan\theta > 0$	7#
SIA	
3) Simplify: $\frac{\left(\frac{1-x}{2}\right)}{\left(3-\frac{2}{x}\right)}$	1-x x
$\left(3-\frac{2}{x}\right)$	$\frac{1-x}{2} \cdot \frac{x}{3x-2}$
	$\frac{\chi(1-\kappa)}{2(3\kappa-2)}$

4) Find the first four terms of the following sequence

$$a_n = \frac{3^n}{n!}$$

a, = 31

$$\Omega_2 = \frac{q}{2!} = \boxed{\frac{q}{2}}$$

$$a_3 = \frac{27}{3!} = \boxed{27}$$

5) If f(x) = 3x + 1, then find $f^{-1}(-3)$.

$$X = 34 + 1$$

$$\frac{\chi - 1}{3} = \gamma^{-1}$$

$$-\frac{3-1}{3} = \left[-\frac{4}{3} \right]$$

6) What angle, $[0,2\pi]$, intersects the unit circle at the point $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$?

7) Write the equation of the line that passes through the point (5, -3) and is perpendicular to the line

$$y = \frac{5}{2}x + 5.$$

$$m = -2/5$$

$$y + 3 = -\frac{2}{5}(x-5)$$

$$\gamma = -\frac{2}{5}x - 1$$

8) Simplify: $\frac{7!}{4!(7-4)!}$

7x6x5x4x3x2x1 (4x3x2x1)(3x2x1)

35

9) Find the exact value of $csc - \frac{5\pi}{6}$.

-5TL

 $\sin(6\pi) = -\frac{1}{2}$

CSC (-5T) = [-2]

10) Find f(x-1) if $f(x) = 3x^2 - 5x - 5$

 $3(x-1)^{2}-5(x-1)-5$ $3(x^{2}-2x+1)-5x+5-5$ $3x^{2}-6x+3-5k$

3x2-11x+3

11) Find the 5th term of the recursive sequence

$$a_{k+1} = 2a_k - 1$$
 where $a_1 = 2$

$$a_2 = 2(2) - 1 = 3$$

$$a_3 = 2(3) - 1 = 5$$

$$Q_5 = 2(9) - 1 = [7]$$

12) Solve: $\frac{5}{t+1} + \frac{2}{t-2} = \frac{13}{t^2 - t - 2}$

$$\frac{5(t-2)+2(t+1)}{t^2-t-2} = \frac{13}{t^2-t-2}$$

$$5t-10+2t+2=13$$

 $7t-8=13$
 $7t=21$
 $t=31$