Unit \#7: Sequence and Series
Date: \qquad
Topic: Introduction to Sequences and Series
Objective: SWBAT explain the difference between various sequences and series.

What is an Infinite Sequence?

A infinite sequence is \qquad generated by a rule.

Formal Definition:

An infinite sequence is an \qquad usually denoted by \qquad , whose domain is the set of \qquad .

Example \#1:
Express the sequence of numbers $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$ as an explicit rule in terms of n.

Does the sequence above converge or diverge?

Example \#2:

If $a_{n}=\left\{\frac{4 n}{3+2 n}\right\}$, list out the first five terms, then estimate $\lim _{n \rightarrow \infty} a_{n}$.

Practice Problems: Write the first four terms of the sequence and then determine the limit of the sequence or state that the sequence diverges.

1. $a_{n}=-1+\frac{(-1)^{n}}{n}$
2. $b_{n}=\frac{n^{2}-1}{n}$
3. $a_{n}=(-1)^{n+1}$
4. $c_{n}=\frac{n^{2}}{e^{n}}$
5. $a_{n}=\left(1+\frac{1}{n}\right)^{n}$
6. $b_{n}=\frac{3 n}{1-2 n}$
7. $a_{n}=(-1)^{n+1}\left(1-\frac{1}{n}\right)$
8. $c_{n}=\frac{n!}{(n+2)!}$

What is an Infinite Series?

A series is the sum of the terms in a sequence. A finite series has a defined first and last term. An infinite series is the sum of an infinite sequence denoted by

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

In the study of series, the major goal is to determine whether a series has a limit. If the series has a limit, it is said to converge to that value. If the series does not have a limit, it is said to diverge.

Partial Sums

A partial sum is a sum of part of a series. The partial sums of a series form a sequence in themselves.

For an infinite series, we can look at the sequence of partial sums, that is, we can look to see what happens to the sum as we add additional terms.

If the sequence of partial sums converges, then the series converges. Otherwise, we say the series diverges.

Examples: Do the following series converge or diverge?
a) $\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}-1}$
b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
c) $\sum_{\mathrm{k}=1}^{\infty} \frac{3}{10^{\mathrm{k}}}$

1. The Geometric Series

In a geometric sequence, each term is obtained by multiplying the preceding term by a constant r.

Example:

$$
\begin{aligned}
-2,1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \ldots \quad \text { where } a= & -2 \text { is the first term } \\
& \text { and } r=-\frac{1}{2} \text { is the common ratio. }
\end{aligned}
$$

The geometric series formed by adding successive terms of a geometric sequence is

If \qquad , then the geometric series \qquad .

If \qquad , then the geometric series \qquad .

The sum of the terms of a convergent geometric series is given by $\boldsymbol{S}=$

Some Things to Remember

1. A finite number of terms may be added or subtracted from a series without affecting its convergence or divergence.
(i.e. $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=m}^{\infty} a_{k}$ both converge or both diverge)
2. The terms of a series may be multiplied by a non-zero constant without it affecting the convergence or divergence.
3. If $\sum a_{n}$ and $\sum b_{n}$ both converge, so does $\sum\left(a_{n}+b_{n}\right)$.

Practice Problems: Tell whether each series converges or diverges. If it converges, give its sum.
9. $\sum_{n=1}^{\infty} 3\left(\frac{1}{2}\right)^{n-1}$
10. $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots+\left(-\frac{1}{2}\right)^{n-1}+\cdots$
11. $\frac{\pi}{2}+\frac{\pi^{2}}{4}+\frac{\pi^{3}}{8}+\cdots$
12. $\sum_{k=0}^{\infty}\left(\frac{3}{5}\right)^{k}$
13. $\sum_{n=0}^{\infty}\left(0.5^{n}-0.2^{n}\right)$
14. $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)^{n}$
15. $3-\frac{9}{2}+\frac{27}{4}-\cdots$
16. $-6-3-\frac{3}{2}-\frac{3}{4}-\cdots$
2. The p - series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots
$$

If \qquad then the $p-$ series \qquad .

If \qquad , then the p - series \qquad .

In the case of the p-series, we can determine if the series converges, but not the value to which it converges.

Example:

Do each of the following series converge or diverge?
a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
b) $\sum_{n=1}^{\infty} \frac{1}{5 n^{4}}$
c) $\sum_{n=1}^{\infty} 2 n^{-3}$

3. The Harmonic Series

The harmonic series is an example of a p-series where $p=1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

The harmonic series is an important example of a series that \qquad yet has terms that approach zero.

Example:

Does the series $\sum_{k=1}^{\infty} \frac{2}{n}$ converge or diverge?

4. The Telescoping Series

The telescoping series is a collapsing series where all the middle terms cancel each other out and the last term always approaches 0 , so that all that is left is the first term.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \text { or } \sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

Example:

Determine whether the series $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)$ converges and if so find its sum.

Practice Problems: Identify each of the following series and then determine whether it converges or diverges.
17. $\sum_{n=0}^{\infty}\left(\frac{3^{n}}{4^{n}}\right)$
18. $\sum_{n=0}^{\infty} e^{-n}$
19. $2\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots\right]$
20. $\sum_{n=1}^{\infty} \frac{0.5}{n}$
21. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$
22. $\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$
23. $-\frac{1}{7}-\frac{1}{14}-\frac{1}{21}-\frac{1}{28}-\cdots$
24. $\sum_{n=1}^{\infty}\left(\frac{1}{n^{3}}-0.9^{n}\right)$
25. $1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots$
26. $\sum_{n=1}^{\infty} \frac{3}{n \sqrt{n}}$
27. $\sum_{n=1}^{\infty}\left(\frac{1}{2^{n}}+\frac{1}{n}\right)$
28. $5+\frac{5}{8}+\frac{5}{27}+\frac{5}{64}+\cdots$
29. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}$
30. $\sum_{n=1}^{\infty} 3\left(-\frac{1}{2}\right)^{n}$

Answers:

1. -1
2. diverges
3. diverges
4. 0
5. 1
6. $-3 / 2$
7. diverges
8. 0
9. $6 \quad$ 10. $\frac{2}{3}$
10. diverges
11. $\frac{5}{2}$
12. 0.75
13. diverges
14. diverges
15. -12
16. converges
17. diverges
18. converges
19. converges
20. diverges
21. converges
22. diverges
23. converges
24. diverges
25. converges
26. converges
