*Unit #5:* Improper Integrals *Topic:* L'Hopital's Rule *Objective: SWBAT find the limit of a function using LHopital's Rule.* 

# L'Hopital's Rule

L'Hopital's Rule allows us to use derivatives to evaluate limits that otherwise lead to indeterminate forms.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$



```
1661-1704
```

Some examples of the indeterminate form 0/0 are given below.

## Warm Up #1:

1) Find each of the following limits.

| a) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} =$ | b) $\lim_{x \to 0} \frac{\sin x}{x} =$ | c) $\lim_{x \to 0} \frac{1 - \cos x}{x} =$ |
|---------------------------------------------|----------------------------------------|--------------------------------------------|
|                                             |                                        |                                            |
|                                             |                                        |                                            |
|                                             |                                        |                                            |

2) Find each of the following one-sided limits.



When we reach a point where one of the derivatives approaches 0, as shown above, and the other does not, then

If the numerator approaches 0, we know the limit is \_\_\_\_\_\_.

If the denominator approaches 0, we know the limit is \_\_\_\_\_\_ *Now let's look at the indeterminate forms*  $^{\infty}/_{\infty}$ ,  $\infty \cdot 0$ , *and*  $\infty - \infty$ 

*Example #1:* Find each of the following limits.

a)  $\lim_{x \to \pi/2} \frac{secx}{1+tanx} =$ 

When we look at the form  $\infty \cdot 0$  or  $\infty - \infty$  we can make it look like 0/0 or  $\infty/\infty$  and use L'Hopital's Rule.

b)  $\lim_{x\to\infty} xsin\frac{1}{x} =$ 

c) 
$$\lim_{x\to 1} \left( \frac{1}{\ln x} - \frac{1}{x-1} \right) =$$

| 1) $\lim_{x \to 0} \frac{\sin x - x}{2x^3} =$ | 2) $\lim_{x \to +\infty} \frac{x^2}{e^x} =$                           |
|-----------------------------------------------|-----------------------------------------------------------------------|
|                                               |                                                                       |
|                                               |                                                                       |
|                                               |                                                                       |
| 3) $\lim_{x \to \pi/4} (1 - tanx) \sec 2x =$  | 4) $\lim_{x \to 0^+} \left( \frac{1}{x} - \frac{1}{\sin x} \right) =$ |
|                                               |                                                                       |
|                                               |                                                                       |
| 24                                            |                                                                       |
| 5) $\lim_{x \to 0} \frac{e^{2x} - 1}{x} =$    | 6) $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}} =$                    |
|                                               |                                                                       |
|                                               |                                                                       |
|                                               |                                                                       |
| 7) $\lim_{x \to 0^{-}} \frac{\tan x}{x^2} =$  | 8) $\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1} =$                 |
|                                               |                                                                       |
|                                               |                                                                       |
|                                               |                                                                       |
| 9) $\lim_{x \to 0^+} (x \ln x) =$             | 10) $\lim_{x \to \pi} \frac{cscx}{1+cotx} =$                          |
|                                               |                                                                       |
|                                               |                                                                       |
|                                               |                                                                       |

*Problem Set #1:* Find the limit for each of the following using L'Hopital's Rule.

## Warm Up #2:

Find each of the following limits:

a) 
$$\lim_{x \to 3} \frac{x-3}{x^2-2x-3} =$$
 b)  $\lim_{x \to \infty} \frac{4-x^2}{4x^2-x-2} =$  c)  $\lim_{h \to 0} \frac{\cos(\frac{\pi}{2}+h) - \cos(\frac{\pi}{2})}{h}$ 

#### Finally, let's look at the indeterminate forms $\mathbf{1}^{\infty},\mathbf{0}^{0},$ and $\infty^{0}$

Limits that lead to the indeterminate forms  $1^{\infty}$ ,  $0^{0}$ , and  $\infty^{0}$  can sometimes be handled by taking logarithms first, then

$$\lim_{x \to a} lnf(x) = L \qquad \Rightarrow \qquad \lim_{x \to a} e^{lnf(x)} = e^{L}$$

*Example #2:* Find each of the following limits.

a)  $\lim_{x\to 0} (1+x)^{1/x} =$ 

b) 
$$\lim_{x \to 1} (x^2 - 2x + 1)^{x-1} =$$

## c) $\lim_{x\to\infty} x^{1/x} =$

*Problem Set #2: Find each of the following limits.* 

| 11) $\lim_{x\to 0} (e^x + x)^{1/x} =$  | 12) $\lim_{x \to 0^+} (2x)^{x/4} =$       |
|----------------------------------------|-------------------------------------------|
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
|                                        |                                           |
| -                                      |                                           |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (\ln x)^{1/x} =$ |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x\to\infty} (lnx)^{1/x} =$     |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (lnx)^{1/x} =$   |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (lnx)^{1/x} =$   |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (\ln x)^{1/x} =$ |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (\ln x)^{1/x} =$ |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (\ln x)^{1/x} =$ |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x\to\infty} (\ln x)^{1/x} =$   |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x\to\infty} (\ln x)^{1/x} =$   |
| 13) $\lim_{x \to 1^+} (x - 1)^{lnx} =$ | 14) $\lim_{x \to \infty} (\ln x)^{1/x} =$ |

AP Calculus BC Unit 5 Lesson 1 & 2

| 1,                                                | ( )                                                        |
|---------------------------------------------------|------------------------------------------------------------|
| (15) $\lim_{x \to 1} x^{1/(1-x)} =$               | 16) $\lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n =$ |
| $x \to 1$                                         | $\int dx = \frac{1}{x} \int dx = \frac{1}{x} \int dx$      |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   | 24                                                         |
| (17) $\lim_{x \to \frac{\pi}{2}} (sinx)^{tanx} =$ | 18) $\lim_{x \to \infty} (e^x + 1)^{-2/x} =$               |
| 2                                                 |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
| 19) $\lim_{x \to 0} (1 + 2x)^{cscx} =$            | 20) $\lim_{x \to \infty} (1 + 2u)^{1/2lmu} =$              |
| $1 \rightarrow 0 (1 + 2n)$                        | $201 \lim_{x \to \infty} (1 + 2x)^{-2inx} =$               |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |
|                                                   |                                                            |

#### **Answer Key:**

Problem Set #1 1. -1/12 2. 0 3. 1 4. 0 5. 2 6. 0 7.  $-\infty$  8. 5/7 9. 0 10. -1 Problem Set #2 11.  $e^2$  12. 1 13. 1 14. 1 15. 1/e 16.  $e^3$  17. 1 18.  $e^{-2}$  19.  $e^2$  20.  $\sqrt{e}$