Unit \#8: Taylor Polynomials and Power Series
Topic: Introduction to Taylor Polynomials
Objective: SWBAT develop various Taylor Polynomials for elementary functions.

Warm Up 北:

Find an equation of the tangent line for $f(x)=\sin x$ at $x=0$, then use it to approximate $\sin (0.2)$. Is this an over or an under approximation for $\sin (0.2)$?

Polynomial functions, such as the tangent line, can be used to approximate other elementary function, such as $\sin x, e^{x}, \ln x$, etc. The equation of the tangent line is called a first-degree Taylor polynomial.

Taylor polynomials of higher degree can be used to obtain increasingly better approximations of non-polynomial functions within a certain radius from a center of approximation $x=c$.

Definition of an nth-degree Taylor polynomial:

If f has n derivatives at $x=c$, then the polynomial

$$
T_{n}(x)=
$$

is called the nth-degree Taylor polynomial for f centered at c.

There is a specific case of a Taylor polynomial where $c=0$, such that

$$
T_{n}(x)=
$$

is called the nth-degree Maclaurin polynomial for f.

Note: For Taylor and Maclaurin Polynomials, you must use the \approx symbol so that $f(x) \approx T_{n}(x)$

Example \#1: Find the Maclaurin polynomial of degree $n=5$ for $f(x)=\sin x$. Then use $T_{5}(x)$ to approximate the value of $\sin (0.2)$ using correct notation. Compare your approximation to the actual value of $\sin (0.2)$.

Example \#2:

Find a third-degree Taylor polynomial centered at 1 for $f(x)=\sqrt{x}$, and use the polynomial to approximate $\sqrt{1.2}$.

Find the error for your approximation and determine the interval in which $\sqrt{1.2}$ could actually live.

Finally, compare your approximation to the actual value of $\sqrt{1.2}$. Is it in your interval?

Practice Problems:

1. Find a Maclaurin polynomial of degree 4 for $f(x)=\frac{1}{1-x}$.
2. Find the Taylor polynomial of degree $n=6$ for $f(x)=\ln x$ at $c=1$. Then use $T_{6}(x)$ to approximate the value of $\ln (1.1)$.
3. Use the fourth-degree Taylor polynomial for $\cos x$ centered at $x=0$ to approximate $\cos \left(\frac{\pi}{6}\right)$.
4. Find the Taylor polynomial of degree $n=3$ for $f(x)=\frac{1}{x+2}$ at $c=3$.
5. Find the Taylor polynomial of degree 4 for $f(x)=\sqrt{1-x}$ centered at $c=-3$.
6. Use the fifth-degree Maclaurin polynomial for $f(x)=e^{x}$.

Warm Up ${ }^{\text {U2 }}$ Z:

Suppose that g is a function which has continuous derivatives, and that $g(2)=3$, $g^{\prime}(2)=-4, g^{\prime \prime}(2)=7, g^{\prime \prime \prime}(2)=-5$. Write he Taylor polynomial of degree 3 for g centered at 2.

Sometimes we can create Maclaurin Polynomials to approximate functions without having to derive them using Taylor's Theorem, but rather by modifying existing polynomials.

Example \#3:
List the first four non-zero terms of the Maclaurin Polynomials for $f(x)=\sin x$, $f(x)=\cos x$, and $f(x)=e^{x}$, then find the following Maclaurin Polynomials.
a) $g(x)=\sin (2 x)$
b) $g(x)=x \cos x$
c) $g(x)=4 e^{x^{2}}$

Practice Problems: Find a Taylor polynomial of degree n for each of the following.
7) $f(x)=e^{-x}, n=3$
8) $f(x)=2 \cos \left(x^{2}\right), n=4$
9) $g(x)=\ln (x+2), n=3$
10) $h(x)=\frac{1}{x+1}, \quad n=4$
11) $m(x)=x e^{2 x}, n=3$
12) Suppose the function $f(x)$ is approximated near $x=0$ by a sixth-degree Taylor polynomial $P_{6}(x)=3 x-4 x^{3}+5 x^{6}$. Give the value of each of the following:
(a) $f(0)$
(b) $f^{\prime}(0)$
(c) $f^{\prime \prime \prime}(0)$
(d) $f^{5}(0)$
(e) $f^{6}(0)$

13) Calculator Allowed

Suppose that g is a function which has continuous derivatives, and that $g(5)=3$, $g^{\prime}(5)=-2, g^{\prime \prime}(5)=1, g^{\prime \prime \prime}(5)=-3$.
(a) What is the Taylor polynomial of degree 2 for g near 5. What is the Taylor polynomial of degree 3 near 5 ?
(b) Use the two polynomials that you found in part (a) to approximate $g(4.9)$.

Answer Key

| 1) $T_{4}(x)=1+x+x^{2}+x^{3}+x^{4}$ | 2) $T_{6}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5}-\frac{(x-1)^{6}}{6}$ |
| :--- | :--- | :--- |
| 3) $T_{4}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ | 4) $T_{3}(x)=\frac{1}{5}-\frac{(x-3)}{25}+\frac{(x-3)^{2}}{125}-\frac{(x-3)^{3}}{625}$ |
| 5) $T_{4}(x)=1-\frac{(x+3)}{4}-\frac{(x+3)^{2}}{64}-\frac{(x+3)^{3}}{512}-\frac{5(x+3)^{4}}{16384}$ | 6) $T_{5}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}$ |
| 7) $T_{3}(x)=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}$ | 8) $T_{4}(x)=2-x^{4}+\frac{x^{8}}{12}$ |
| 9) $T_{3}(x)=(x+1)-\frac{(x+1)^{2}}{2}+\frac{(x+1)^{3}}{3}$ | 10) $T_{4}(x)=1-x+x^{2}-x^{3}+x^{4}$ |
| 11) $T_{3}(x)=x+2 x^{2}+2 x^{3}+\frac{4 x^{4}}{3}$ 12) a) 0 b) 3 c) $-24 \quad$ d) 0\quad e) 3600 | |
| 13) a) $T_{2}(x)=3-2(x-5)+\frac{(x-5)^{2}}{2} ;$ | $T_{3}(x)=3-2(x-5)+\frac{(x-5)^{2}}{2}-\frac{(x-5)^{3}}{2}$ |
| b) $T_{2}(4.9)=2.805, \quad T_{3}(4.9)=2.8055$ | |

