Unit #10: Applications of DifferentiationTopic: Mean Value TheoremObjective: SWBAT explain whether or not a function satisfies the MVT.SWBAT find a value of c that satisfies the MVT on a given interval.

Warm Up #1:

Given: $f(x) = \frac{x^2 - 9}{3x}$

a) Graph f(x) over the interval [1, 4].

x	f(x)
1	
2	
3	
4	

b) Find the average rate of change of *f* over [1, 4].

c) Find the instantaneous rate of change of f at x = 2.

What do you notice??

The Mean Value Theorem (MVT):

The mean value theorem connects the average rate of change of a function over an interval to the instantaneous rate of change of the function at a point within the same interval.

The theorem states:		
If <i>f</i> (<i>x</i>) is	_ at EVERY point on the	
interval [a,b] and	at EVERY point on the	
interval (a,b), then there is at least one point <i>c</i> in (a,b) at which		

Example #1: Find all values of *c* that satisfies the conclusions of the Mean Value Theorem for $f(x) = \sqrt{2-x}$ on [-7, 2].

Can we do the dame thing to find a value of c that satisfies the MVT for f(x) on [-5, 4]? Explain your reasoning.

What goes up MUST come down!!

Rolle's Theorem:

Rolle's theorem is a special case of the MVT that states:

If f(x) is continuous at EVERY point on the closed interval [a,b] and differentiable at

EVERY point on the open interval (a,b), AND ______, then there is at

least one value of *c* where ______.

Example #2: Find all values of *c* that satisfies the conclusions of Rolle's Theorem for $y = -x^2 + 8x - 17$ on [2, 6].

Practice Problems: For each problem, determine if the Mean Value Theorem or Rolle's Theorem can be applied. If it can, find all values of *c* that satisfy the theorem. If it cannot, explain why not.

1) $y = x^2 + \frac{1}{2}$; [1,2]	2) $f(x) = sin2x$; $[0, \pi]$

Honors Precalculus

Unit #10 Lesson 1

	-
3) $q(x) = \frac{1}{1}$; [1,3]	4) $f(x) = -\frac{x^2}{x^2} + x - \frac{1}{x^2} + [-2, 1]$
x-2	1) (x) = 2 x 2, [2,1]
χ^2	(2,1,(2),(2,2),(2,1),(2,2))
5) $y = \frac{x}{2} - 2x - 1$; [-1,1]	6) $h(x) = -(-2x+6)^{1/2}$; [-2,3]
Δ	
7) $y = \frac{x^2 - 1}{x^2 - 1} \cdot [-1, 1]$	8) $f(x) = -x^3 + 4x^2 - 3$; [0,4]
, , , , , , , , , , , , , , , , , , ,	

Honors Precalculus

Unit #10 Lesson 1

9) $f(x) = -(6x + 24)^{2/3}$; [-4, -1]	10) $y = \frac{-x^2 + 9}{4x}$; [1,3]
11) $q(x) = 5cosx : [0, 2\pi]$	x ²
(x) g(x) = b b b b x , [b, 2x]	12) $y = -\frac{x}{4x+8}$; [-3, -1]
13) $f(x) = \frac{x+1}{x}$; $\left[\frac{1}{2}, 2\right]$	14) $y = 5 - \frac{4}{x}$; [1,4]

Honors Precalculus

Unit #10 Lesson 1

16) $g(x) = (x-3)^{2/3}$; [1,4]

Answer Key

1) MVT; $x = \frac{3}{2}$	2) Rolles ; $x = \frac{\pi}{4}$, $\frac{3\pi}{4}$	3) neither ; not continuous at $x = 2$.
4) MVT ; $x = -\frac{1}{2}$	5) MVT ; $x = 0$	6) MVT ; $x = \frac{7}{4}$
7) neither ; not diff. at $x = 0$.	8) Rolles ; $x = \frac{8}{3}$	9) MVT ; $x = -\frac{28}{9}$
10) MVT ; $x = \sqrt{3}$	11) Rolles ; $x = 0, \pi, 2\pi$	12) neither ; not continuous at $x = -2$.
13) MVT ; $x = \sqrt{\frac{2}{3}}$	14) MVT ; $x = 2$	15) MVT ; $x = \frac{2}{\ln 3} + 1$
16) neither ; not diff. At $x = 3$.		