Unit \#6: Parametric and Polar Derivatives
Topic: Parametric Derivatives
Objective: SWBAT find the first and second derivatives of a parametric equation.

Warm Up \#1:

Find and graph a Cartesian equation for a curve that contains the parametrized curve given below.

$$
x=3-3 t \text { and } y=2 t \quad \text { from } 0 \leq t \leq 1
$$

Slope and Concavity of Parametric Equations

There are times when we need to describe motion (or a curve) that is not a function. We can do this by writing equations for the x and y coordinates in terms of a third variable, usually t or θ. These are called parametric equations, where " t " is the parameter.

$$
x=f(t) \quad y=g(t)
$$

We can analyze the slope and concavity of parametric curves the same way we can with explicitly defined curves.

Parametric Differentiation Formulas:

$\frac{d y}{d x}=\quad \frac{d^{2} y}{d x^{2}}=$

Example \#1: Given the following curve defined parametrically by $x=\ln (5 t)$ and $y=e^{5 t}$.
a) Find $\frac{d y}{d x}$.
b) Find $\frac{d^{2} y}{d x^{2}}$.

Example \#2: Consider the curve defined parametrically by $x=t^{2}-3 t$ and $y=t^{3}$.
a) Find the values of t where the tangent line to the curve is (1) horizontal or (2) vertical.
b) Find the equation of the line tangent to the curve at $t=1$.
c) Find all points of inflection on the curve. Justify your answer.

Problem Set \#1:

1. Find the tangent line(s) to the parametric curve given by $x=t^{5}-4 t^{3}$ and $y=t^{2}$ at $(0,4)$.
2. Determine the $x-y$ coordinates of the points where the following parametric equations will have horizontal or vertical tangents.

$$
x=t^{3}-3 t \quad y=3 t^{2}-9
$$

3. Determine the values of t for which the parametric curve given by the following set of parametric equations is concave up and concave down.

$$
x=1-t^{2} \quad y=t^{7}+t^{5}
$$

4. An object moves along the path $x=3 t$ and $y=\cos (2 t)$, where t is time.
a) Write the equation for the line tangent to the curve at $t=\frac{\pi}{3}$.
b) Find the smallest value of t for which the y-coordinate is a local maximum.
c) Find $\frac{d^{2} y}{d x^{2}}$ when $t=2$. What does this tell you about the concavity of the graph at $t=2$?
5. Given the parametrized curve $x=2$ cost and $y=3 \sin t, 0 \leq t \leq 2 \pi$.
a) Find an equation for the tangent at the point where $t=\frac{3 \pi}{4}$.
b) Find an equation for the normal at the point where $t=\frac{3 \pi}{4}$.
6. A curve C is defined by the parametric equations $x=t^{2}+t-1, y=t^{3}-t^{2}$.
a) Find $\frac{d y}{d x}$ in terms of t.
b) Find an equation of the tangent line to C at the point where $t=2$.

Answer Key

1. $y-4=\frac{1}{8} x \quad$ and $\quad y-4=-\frac{1}{8} x$
2. horizontal at $(0,-9)$; vertical at $(2,-6)$ and $(-2,-6)$
3. concave down $t<0$ and concave up $t>0$
4. a) $y+\frac{1}{2}=-\frac{\sqrt{3}}{3}(x-\pi)$
b) $t=\pi$
c) concave up
5. a) $y-\frac{3 \sqrt{2}}{2}=\frac{3}{2}(x+\sqrt{2})$
b) $y-\frac{3 \sqrt{2}}{2}=-\frac{2}{3}(x+\sqrt{2})$
6. a) $\frac{d y}{d x}=\frac{3 t^{2}-2 t}{2 t+1}$
b) $y-4=\frac{8}{5}(x-5)$
