Unit \#4: Parametric and Polar Equations
Topic: Parametric Equations
Objective: SWBAT analyze parametric equations by identifying points, graphing, and eliminating the parameter.

## Parametric Equations:

Imagine hitting a golf ball and watching its flight path until it lands. We can write rectangular equations that model the height of the ball as a function of the distance travelled, but often we are interested in analyzing each of these separately as a function of time.

To do this, we would need two separate equations, one to model the height of the ball (call it $y$ ) as a function of time, $t$, and another to model the distance the ball travels (call it $x$ ) as a function of time, $t$. This is the idea behind parametric equations.

In general, parametric equations are a pair of equations that involve a third, independent variable which usually represents time. Both $x$ and $y$ are now dependent variables.

## Example \#1:

A particle moves through the $x y$-plane. Its position at given in feet at time $t$ seconds is modeled by the equations below. Without a calculator, make a table, and sketch the curve the particle follows, indicating its direction. Then eliminate the parameter.
$x=t^{2}-4 \quad$ and $\quad y=\frac{t}{2},-2 \leq t \leq 3$


Example \#2: Do the same for $x=\frac{1}{\sqrt{t+1}}, y=\frac{t}{t+1}$ for $t \geq 0$.


Example \#3: Do the same for $=2+3 \operatorname{cost}, y=-1+2 \sin t$, for $0 \leq t \leq 2 \pi$.


In example \#3 we made use of the trigonometric identity $\qquad$ to sketch an $\qquad$ . Which trigonometric identity would you use to obtain the graph of a $\qquad$ ?

Problem Set \#1: For each of the following, sketch the curve represented by the parametric equations and eliminate the parameter and write the corresponding rectangular equation.

## CALCULATOR ALLOWED

1. $x=3-2 t \quad-2 \leq t \leq 2$
$y=2+3 t$

2. $x=\ln (2 t) \quad t>0$
$y=2 t^{2}$

3. $x=4 \sin (2 \theta) \quad 0 \leq t \leq \pi$ $y=2 \cos (2 \theta)$
4. $x=e^{2 t} \quad-1 \leq t \leq 3$
$y=e^{t}$
5. $x=\frac{1}{t} \quad \frac{1}{2} \leq t \leq 5$
$y=t+1$




Name $\qquad$ U4L1 Homework

1. Fill in the table and sketch the parametric equation for $t[-2,6]$

$$
\begin{aligned}
& x=\sqrt{t^{2}+1} \\
& y=2-t
\end{aligned}
$$

| $t$ | $x$ | $y$ |
| :---: | :---: | :---: |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |



Problems 2-10: Eliminate the parameter to write the parametric equations as a rectangular equation.
2. $x=\frac{1}{t-2}$

$$
y=4 t+5
$$

3. $\mathrm{x}=6-\mathrm{t}$
$y=\sqrt{3 t-4}$
4. $x=1 / 2 t+4$
$y=t^{3}$
5. $\mathrm{x}=3 \cos \mathrm{t}$
$y=3 \sin t$
6. $x=4 \sin (2 t)$
$\mathrm{y}=2 \cos (2 \mathrm{t})$
7. $x=e^{-t}$
$y=e^{3 t}$
8. $x=t^{3}$
$y=3 \ln t$
9. $x=\frac{1}{4} t$
$y=t^{2}$
10. $x=t+2$
$y=t^{2}$
