Unit \#5: Limits
Topic: Piecewise Functions
Objective: SWBAT graph a piecewise function and determine values of the function at indicated points.

Warm Up \#1:

If $(x)=\left\{\begin{array}{c}x^{2}-1, x<-2 \\ 3,-2 \leq x<1 \\ 4 x+5, x \geq 1\end{array}\right.$, find the value for each of the following:

a) $f(1)=$	b) $f(-6)=$	c) $f(0)=$	d) $f(7)=$

A is a function that is defined in pieces by two or more equations over a given domain.

Examples:
a)

b)

c)

Graphing Piecewise Functions:

Since piecewise functions are defined in pieces, then you have to graph them in pieces too.

Model Problem:

Graph each of the following piecewise functions and then identify the indicated values.

$$
f(x)=\left\{\begin{array}{c}
-2|x+1|, \quad x \leq 1 \\
3,1<x<3 \\
6-2 x, \quad x \geq 3
\end{array}\right.
$$

$$
f(10)=
$$

$f(2)=$
$f(0)=$

Problem Set \#1: Graph each of the following piecewise functions and then identify the indicated values.

1. $f(x)= \begin{cases}2 x+1, & x \geq 1 \\ x^{2}+3, & x<1\end{cases}$
$f(-3)=$
$f(1)=$
$f(5)=$

2. $f(x)=\left\{\begin{array}{c}-x^{2}+2 x, x \leq 2 \\ \sqrt{x-2}, x>2\end{array}\right.$
$f(-1)=$
$f(2)=$
$f(6)=$

3. $f(x)=\left\{\begin{array}{c}|2 x+4|, x<1 \\ 2,1 \leq x<3 \\ -x+3, x \geq 3\end{array}\right.$
$f(-3)=$
$f(1)=$
$f(3)=$

4. $f(x)=\left\{\begin{array}{c}x^{2}-1, x \leq 0 \\ \sqrt{x+1}, \quad 0<x \leq 3 \\ 1, x>3\end{array}\right.$
$f(0)=$
$f(3)=$
$f(5)=$

Name

Homework - Graphing Piecewise Functions

Evaluate the following for $f(x)=\left\{\begin{array}{l}3 x-5, x>4 \\ x^{2}, x \leq 4\end{array}\right.$:

1. $f(7)$
2. $f(4)$
3. $f(-3)$

Evaluate the following for $f(x)=\left\{\begin{array}{ll}-2|x+1|, & x \leq 1 \\ 3, & 1<x<3 \\ 6-2 x, & x \geq 3\end{array}\right.$:
4. $f(10)$
5. $f(2)$
6. $f(0)$

Graph the following piecewise functions.
7. $f(x)=\left\{\begin{array}{cc}3+x, & x<0 \\ x^{2}+1, & x \geq 0\end{array}\right.$
8. $g(x)=\left\{\begin{array}{l}x^{2}-5, \quad x<0 \\ 1, \quad 0<x<2 \\ 2-x, x>3\end{array}\right.$

