Unit #3: Differential Equations *Topic:* Separable Differential Equations *Objective: SWBAT find a general solution to a separable differential equation.*

Warm Up #1:

Find the particular solution to the equation $\frac{d^2y}{dx^2} = 2x + 1$ when x = 0,

 $\frac{dy}{dx} = -1, \text{ and } y = 3.$

A differential equation is an equation which contains a derivative such as $\frac{dy}{dx}$. A differential equation can be solved by finding an expression for *y* in terms of *x* without the derivative.

What if there is more than one variable?

A differential equation of the form $\frac{dy}{dx} = f(y)g(x)$ is called a **separable differential** equation if it can be solved by **separating the variables** and then antidifferentiating each side with respect to the given variable.

Example #1: Find the general solution for the following equation $\frac{dy}{dx} = \frac{(x^2+1)}{2y}$

Example #2: Solve the equation $\frac{dy}{dx} = e^{x-y}$ to find the general solution.

Problem Set #1: Find the general solution to each of the following differential equations.

1 1 1 1 1 1 1 1 1 1			
$1) \ \frac{dy}{dx} = 4x^3y^2$	$2) \ \frac{dy}{dx} = \frac{1}{x^3 y^2}$		

AP Calculus BC Lesson 1

$3) \ \frac{dy}{dx} = \frac{\sqrt{x}}{e^y}$	4) $\frac{dy}{dx} = \frac{y^2(x-3)}{x^3}$
5) $\frac{dy}{dx} = \frac{x}{y}$	6) $\frac{dy}{dx} = 9x^2y$
7) $\frac{dy}{dx} = 3x^2 e^{-y}$	$8) \frac{dy}{dx} = \frac{y}{x(x+1)}$

AP Calculus BC Lesson 1

9) $\frac{dy}{dx} = \frac{xy}{x^2 + 1}$	$10) \ \frac{dy}{dx} = e^{2x+y}$
	-
$11) \ \frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$
$11) \ \frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$
$11) \ \frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$
11) $\frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$
$11) \frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$
$11) \frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$
$11) \frac{dy}{dx} = xy + 2y$	$12) \ \frac{dy}{dx} = \frac{y}{2\sqrt{x}}$

<u>Answer Key</u>		
1. $y = -\frac{1}{x^4 + c}$	2. $y = \left(-\frac{3}{2}x^2 + C\right)^{1/3}$	3. $y = ln \left \frac{2}{3} x^{3/2} + C \right $
4. $y = \frac{2x^2}{2x - 3 - 2x^2C}$	5. $y = \sqrt{x^2 + C}$	6. $y = e^{3x^3 + C}$
7. $y = ln x^3 + C $	$8. \ y = e^c \left \frac{x}{x+1} \right $	9. $y = e^c \sqrt{x^2 + 1}$
10. $y = -ln \left -\frac{1}{2}e^{2x} - C \right $	11. $y = e^{\frac{1}{2}x^2 + 2x + C}$	12. $y = e^{\sqrt{x} + C}$