Unit \#3: Trigonometry
Topic: The Unit Circle
Objective: SWBAT find the value of a trigonometric expression by using the unit circle.

Warm Up \#1:

Fill in the missing values in each of the charts given below:

Function	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
\sin			
\cos			
\tan			

Function	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\sin				
\cos				
\tan				

The radian measure of an angle is the arc length of the angle on the unit circle.
Relationship between radians and degrees.

Degrees to Radians:	Radians to Degrees:

A reference angle is the acute angle formed between the terminal side of a given angle and the x-axis.

The unit circle has a center at the origin $(0,0)$ and radius of one unit.
For any point (x, y) on the circle, the lengths x and y become the legs of a right triangle whose hypotenuse is 1 .

$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
So $(x, y)=$

The unit circle is a wonderful reference tool for determining EXACT trigonometric values.

Problem Set \#1:

Find the point (x, y) on the unit circle that corresponds to the real number t :

1) $t=\frac{5 \pi}{6}$	2) $t=\frac{8 \pi}{3}$
3) $t=-\frac{3 \pi}{4}$	4) $t=-\pi$

Find the exact value for each of the following trigonometric functions:

5) $\sin \frac{7 \pi}{4}=$	6) $\tan \frac{11 \pi}{4}=$
7) $\csc \frac{7 \pi}{6}=$	8) $\cos -\frac{5 \pi}{2}=$
11) $\sin -\frac{\pi}{6}=$	$12) \cot \frac{5 \pi}{3}=$
13) $\cos \frac{5 \pi}{6}=$	$14) \sec \frac{3 \pi}{4}=$
15) $\sin -\frac{4 \pi}{3}=$	$16) \csc -\frac{2 \pi}{3}=$
17$) \sin \frac{9 \pi}{4}=$	$18) \cos \frac{10 \pi}{3}=$
19$) \tan =-\frac{13 \pi}{6}$	$20) \sec \frac{5 \pi}{4}=$

