Unit #5: Limits *Topic:* Finding Limits Graphically *Objective: SWBAT find the limit of a function by using the graph and by direct substitution.*

Warm Up #2:

CALCULATOR ALLOWED

- 1. Consider the graph of the function: $f(x) = \frac{x^2 5x + 4}{x 4}$
 - a) Are there any values of *x* for which the function is undefined? Why?
 - b) Enter the function into your graphing calculator and using the table set begin your table at x = 3 and set the $\Delta Table$ to 0.1. Use the values given to fill in the table below.

x	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5
у											

- c) Explain in your own words what is happening at x = 4.
- 2. Consider the graph of the function: $f(x) = \frac{\sqrt{x-1}}{x-1}$
 - a) Are there any values of *x* for which the function is undefined? Why?
 - b) Enter the function into your graphing calculator and using the table set begin your table at x = 0 and set the $\Delta Table$ to 0.1. Use the values given to fill in the table below.

x	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5
у											

c) Explain in your own words what is happening at x = 1.

What is the Limit of a Function?

In mathematics, the *limit of a function* is a fundamental concept in calculus. A limit is a certain value to which a function approaches. Finding a limit means finding what value *y* is as *x* approaches a certain number.

$$\lim_{x\to c} f(x) = L.$$

We are only concerned about what happens with f(x) as x gets arbitrarily close to c. We don't actually care about what happens when x=c.

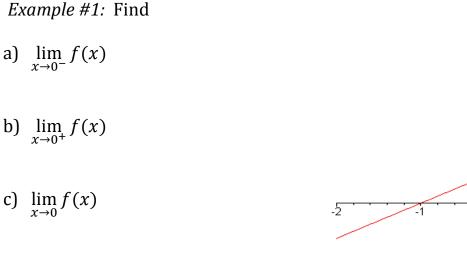
How do we find Limits?

There are several methods that can be used to find limits.

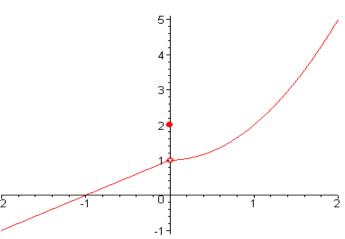
1. Graphically

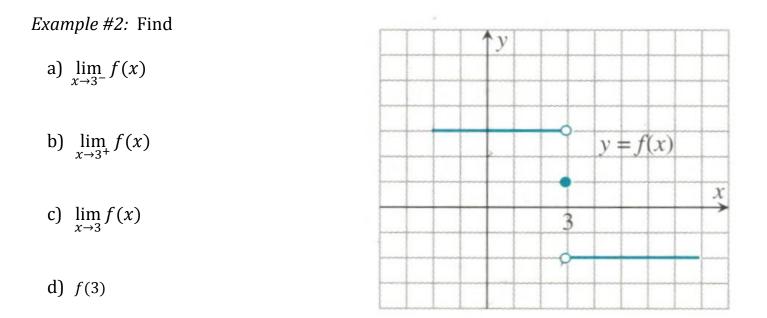
We can approach a given value from the left, which will give us the left-sided limit, or from the right, which will give us the right-sided limit.

The limit exists if the **left-sided limit** = **the right-sided limit**.



d) f(0)





2. By Direct Substitution

We can find the limits of polynomial functions and *most* rational functions by using direct substitution.

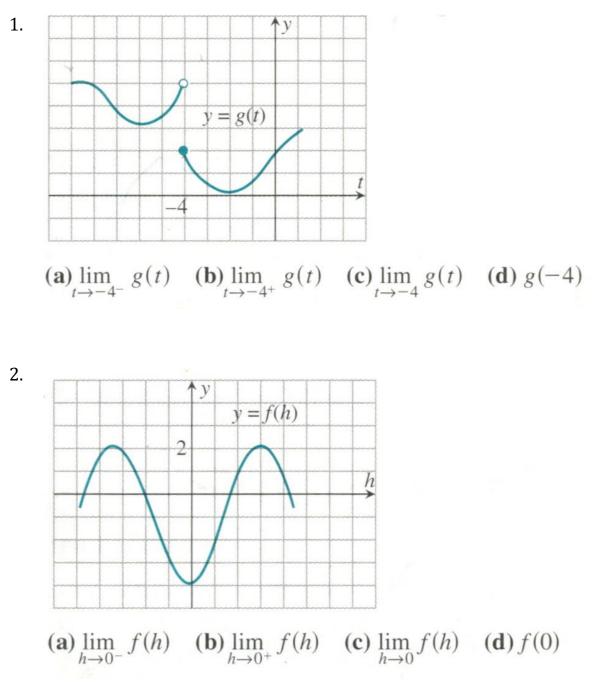
Example #3: Find the limits for each of the following.

a)
$$\lim_{x\to 3}(2x+4)$$

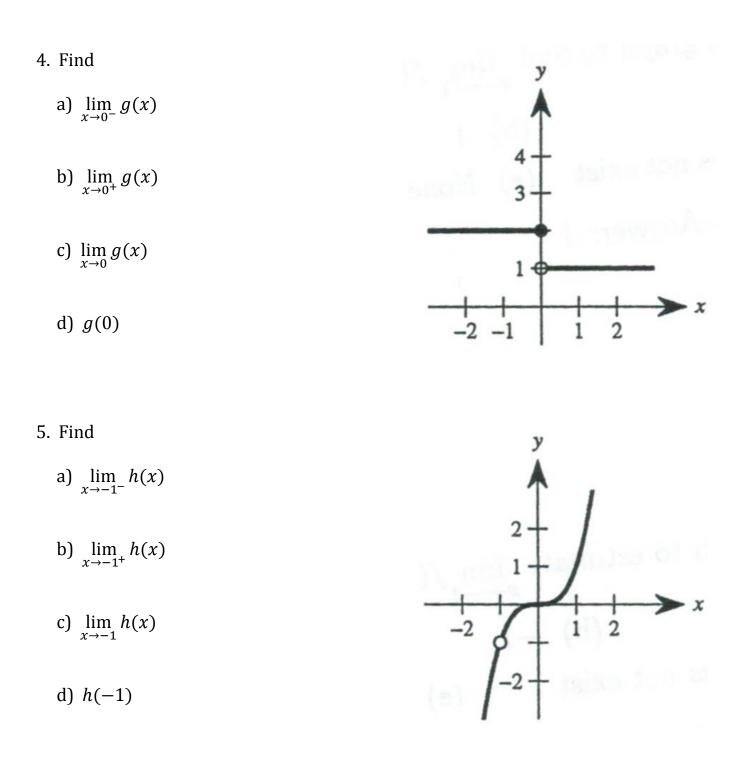
b)
$$\lim_{x \to -1/2} 3x^2(2x-1)$$

c)
$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

Problem Set #2:

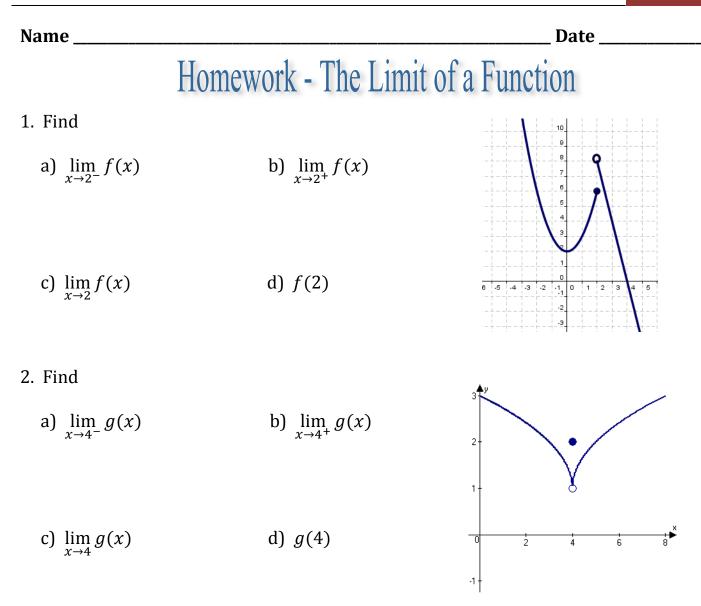


- 3. Find the limit for each of the following:
 - a) $\lim_{x \to 2} \sqrt{x+3}$ b) $\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^2 3}$ c) $\lim_{x \to 0} e^x \cos x$



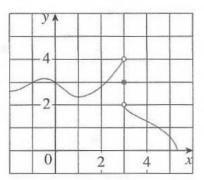
6. Find the limit for each of the following:

a)
$$\lim_{a \to 0.2} (3a + 4)$$
 b) $\lim_{x \to -1} (3x^4 - 2x^3 + 4x)$ c) $\lim_{t \to 4} \frac{3t - 14}{t + 1}$

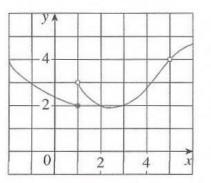


3. For the function f whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.

(a) $\lim_{x \to 0} f(x)$ (b) $\lim_{x \to 3^{-}} f(x)$ (c) $\lim_{x \to 3^{+}} f(x)$



- 4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x \to 1^{-}} f(x)$ (b) $\lim_{x \to 1^{+}} f(x)$ (c) $\lim_{x \to 1} f(x)$
 - (d) $\lim_{x \to 5} f(x)$ (e) f(5)



- 5. Find the limit for each of the following using direct substitution.
 - a) $\lim_{x \to 0} (4x^2 + 2x + 5)$ b) $\lim_{b \to 2} \frac{1}{b^2 1}$ c) $\lim_{x \to 0} 3cosx$

6.

For the function g whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.

(a) $\lim_{t \to 0^{-}} g(t)$ (b) $\lim_{t \to 0^{+}} g(t)$ (c) $\lim_{t \to 0} g(t)$ (d) $\lim_{t \to 2^{-}} g(t)$ (e) $\lim_{t \to 2^{+}} g(t)$ (f) $\lim_{t \to 2} g(t)$ (g) g(2) (h) $\lim_{t \to 4} g(t)$

