Unit \#5: Limits
Topic: Finding Limits Graphically
Objective: SWBAT find the limit of a function by using the graph and by direct substitution.

Warm Up \#2:

CALCULATOR ALLOWED

1. Consider the graph of the function: $f(x)=\frac{x^{2}-5 x+4}{x-4}$
a) Are there any values of x for which the function is undefined? Why?
b) Enter the function into your graphing calculator and using the table set begin your table at $x=3$ and set the Δ Table to 0.1 . Use the values given to fill in the table below.

\boldsymbol{x}	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5
\boldsymbol{y}											

c) Explain in your own words what is happening at $x=4$.
2. Consider the graph of the function: $f(x)=\frac{\sqrt{x}-1}{x-1}$
a) Are there any values of x for which the function is undefined? Why?
b) Enter the function into your graphing calculator and using the table set begin your table at $x=0$ and set the Δ Table to 0.1 . Use the values given to fill in the table below.

\boldsymbol{x}	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5
\boldsymbol{y}											

c) Explain in your own words what is happening at $x=1$.

What is the Limit of a Function?

In mathematics, the limit of a function is a fundamental concept in calculus.
A limit is a certain value to which a function approaches. Finding a limit means finding what value y is as x approaches a certain number.

$$
\lim _{x \rightarrow c} f(x)=L
$$

We are only concerned about what happens with $f(x)$ as x gets arbitrarily close to c. We don't actually care about what happens when $x=c$.

How do we find Limits?

There are several methods that can be used to find limits.

1. Graphically

We can approach a given value from the left, which will give us the left-sided limit, or from the right, which will give us the right-sided limit.

The limit exists if the left-sided limit $=$ the right-sided limit.

Example \#1: Find
a) $\lim _{x \rightarrow 0^{-}} f(x)$
b) $\lim _{x \rightarrow 0^{+}} f(x)$
c) $\lim _{x \rightarrow 0} f(x)$

d) $f(0)$

Example \#2: Find
a) $\lim _{x \rightarrow 3^{-}} f(x)$
b) $\lim _{x \rightarrow 3^{+}} f(x)$
c) $\lim _{x \rightarrow 3} f(x)$
d) $f(3)$

2. By Direct Substitution

We can find the limits of polynomial functions and most rational functions by using direct substitution.

Example \#3: Find the limits for each of the following.
a) $\quad \lim _{x \rightarrow 3}(2 x+4)$
b) $\lim _{x \rightarrow-1 / 2} 3 x^{2}(2 x-1)$
c) $\lim _{x \rightarrow 2} \frac{x^{2}+5 x+6}{x+2}$

Problem Set \#2:

1.

(a) $\lim _{t \rightarrow-4^{-}} g(t)$
(b) $\lim _{t \rightarrow-4^{+}} g(t)$
(c) $\lim _{t \rightarrow-4} g(t)$
(d) $g(-4)$
2.

(a) $\lim _{h \rightarrow 0^{-}} f(h)$
(b) $\lim _{h \rightarrow 0^{+}} f(h)$
(c) $\lim _{h \rightarrow 0} f(h)$
(d) $f(0)$
3. Find the limit for each of the following:
a) $\lim _{x \rightarrow 2} \sqrt{x+3}$
b) $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x^{2}-3}$
c) $\lim _{x \rightarrow 0} e^{x} \cos x$
4. Find
a) $\lim _{x \rightarrow 0^{-}} g(x)$
b) $\lim _{x \rightarrow 0^{+}} g(x)$
c) $\lim _{x \rightarrow 0} g(x)$
d) $g(0)$

5. Find
a) $\lim _{x \rightarrow-1^{-}} h(x)$
b) $\lim _{x \rightarrow-1^{+}} h(x)$
c) $\lim _{x \rightarrow-1} h(x)$
d) $h(-1)$

6. Find the limit for each of the following:
a) $\lim _{a \rightarrow 0.2}(3 a+4)$
b) $\lim _{x \rightarrow-1}\left(3 x^{4}-2 x^{3}+4 x\right)$
c) $\lim _{t \rightarrow 4} \frac{3 t-14}{t+1}$

Name Date \qquad

Homework - The Limit of a Function

1. Find

a) $\lim _{x \rightarrow 2^{-}} f(x)$
b) $\lim _{x \rightarrow 2^{+}} f(x)$
c) $\lim _{x \rightarrow 2} f(x)$
d) $f(2)$

2. Find

a) $\lim _{x \rightarrow 4^{-}} g(x)$
b) $\lim _{x \rightarrow 4^{+}} g(x)$
c) $\lim _{x \rightarrow 4} g(x)$
d) $g(4)$

3. For the function f whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$
(e) $f(3)$

y_{4}						
	4					
	4					
	2					
	0		2	4	x	

4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 1^{-}} f(x)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(d) $\lim _{x \rightarrow 5} f(x)$
(e) $f(5)$

5. Find the limit for each of the following using direct substitution.
a) $\lim _{x \rightarrow 0}\left(4 x^{2}+2 x+5\right)$
b) $\lim _{b \rightarrow 2} \frac{1}{b^{2}-1}$
c) $\lim _{x \rightarrow 0} 3 \cos x$
6.

For the function g whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{t \rightarrow 0^{-}} g(t)$
(b) $\lim _{t \rightarrow 0^{+}} g(t)$
(c) $\lim _{t \rightarrow 0} g(t)$
(d) $\lim _{t \rightarrow 2^{-}} g(t)$
(e) $\lim _{t \rightarrow 2^{+}} g(t)$
(f) $\lim _{t \rightarrow 2} g(t)$
(g) $g(2)$
(h) $\lim _{t \rightarrow 4} g(t)$

