Unit #2: Methods of Integration *Topic:* More U-Substitution *Objective: SWBAT find an indefinite integral of a composite function by using a usubstitution.*

Warm Up #2:

Evaluate each of the following:

a)
$$\int \frac{2x}{\sqrt{4-4x^2}} dx$$

b) $\int \frac{2}{\sqrt{4-4x^2}} dx$

Tips & Guidelines

Sometimes we need to look harder to find the appropriate substitution.

- Reen fm MindB
- If something is being raised to an exponent, that will be *u*.
- If one function is 1 degree higher than the other function, that will be *u*.
- If *e* is being raised to an exponent, that exponent will be *u*.
- If you have one trig function, the inside function will be *u*.
- If something is under a radical, that will be *u*.

Example #1: Evaluate $\int \sqrt{x}\sqrt{x\sqrt{x+1}} dx$

Example #2: Evaluate

$$\int \frac{e^{\ln\sqrt{x}}}{4x} dx$$

Problem Set #2: Evaluate each of the following integrals using an appropriate substitution.

1)
$$\int (x^{3} - 1)^{9} x^{2} dx =$$

A) $\frac{(x^{3} - 1)^{8}}{8} + c$
B) $\frac{x^{3}(x^{3} - 1)^{10}}{10} + c$
C) $\frac{(x^{3} - 1)^{10}}{10} + c$
D) $\frac{x^{3}(x^{3} - 1)^{10}}{30} + c$
E) $\frac{(x^{3} - 1)^{10}}{30} + c$
2) $\int x\sqrt{5x^{2} - 3} dx =$
A) $\frac{1}{15}(5x^{2} - 3)^{\frac{3}{2}} + c$
B) $\frac{x^{2}(5x^{2} - 3)^{\frac{3}{2}}}{3} + c$
C) $\frac{1}{10}(5x^{2} - 3)^{\frac{3}{2}} + c$
D) $\frac{2}{3}(5x^{2} - 3)^{\frac{3}{2}} + c$
E) $10(5x^{2} - 3)^{\frac{3}{2}} + c$

3)
$$\int \frac{2x^2}{\sqrt{x^3 + 3}} dx =$$

A) $\frac{4}{3}\sqrt{x^3 + 3} + c$
B) $\frac{2}{3}\sqrt{x^3 + 3} + c$
C) $\frac{1}{3}\sqrt{x^3 + 3} + c$
D) $\frac{4}{3\sqrt{x^3 + 3}} + c$
E) $\frac{3}{4}\sqrt{x^3 + 3} + c$

4)
$$\int \frac{dx}{(5x+3)^7} =$$

A) $\frac{1}{8(5x+3)^8} + c$
B) $-\frac{1}{30(5x+3)^6} + c$
C) $-\frac{1}{40(5x+3)^8} + c$
D) $-\frac{1}{6(5x+3)^6} + c$
E) $\frac{1}{30(5x+3)^6} + c$

5)
$$\int \frac{\left(\sqrt{x} - 1\right)^{5}}{\sqrt{x}} dx =$$

A) $\frac{(\sqrt{x} - 1)^{6}}{12} + c$
B) $\frac{(x\sqrt{x} - x)^{6}}{6} + c$
C) $\frac{(x - \sqrt{x})^{6}}{6} + c$
D) $\frac{(\sqrt{x} - 1)^{6}}{3} + c$
E) $\frac{(\sqrt{x} - 1)^{6}}{6} + c$

6)
$$\int (x^{2} + 1)(x^{3} + 3x - 7)^{\frac{3}{5}} dx =$$

A) $\frac{5}{24}(x^{3} + 3x - 7)^{\frac{8}{5}} + c$
B) $\frac{5}{8}(x^{3} + 3x - 7)^{\frac{8}{5}} + c$
C) $\frac{1}{3}(x^{3} + 3x - 7)^{-\frac{2}{5}} + c$
D) $\frac{5}{16}(x^{2} + 1)^{2}(x^{3} + 3x - 7)^{\frac{8}{5}} + c$
E) $\frac{8}{15}(x^{3} + 3x - 7)^{\frac{8}{5}} + c$

7)
$$\int \frac{dt}{\sqrt{t} (1 - \sqrt{t})^2} =$$
A) $-\frac{1}{2(1 - \sqrt{t})^3} + c$
B) $-\frac{2}{3(1 - \sqrt{t})^3} + c$
C) $\frac{2}{1 - \sqrt{t}} + c$
D) $-\frac{2}{1 - \sqrt{t}} + c$
E) $\frac{1}{2(1 - \sqrt{t})} + c$

8)
$$\int \frac{x+2}{(x^2+4x-1)^2} dx =$$

A) $-\frac{3}{(x^2+4x-1)^3} + c$
B) $\frac{x^2+2x}{6(x^2+4x-1)^3} + c$
C) $\frac{3}{(x^2+4x-1)^3} + c$
D) $-\frac{1}{2x^2+8x-2} + c$
E) $\frac{1}{2x^2+8x-2} + c$

9)
$$\int \left(x^2 + 2x + 1\right)^{10} dx =$$

A) $\frac{(x+1)^{19}}{19} + c$
B) $\frac{(x+1)^{21}}{21} + c$
C) $\frac{(x+1)^{13}}{13} + c$
D) $\frac{1}{11} \left(\frac{x^3}{3} + x^2 + x\right)^{11} + c$
E) $\frac{(x^2 + 2x + 1)^{11}}{11} + c$

- 10) If functions f and g are differentiable functions, then $\int g'(f(x)) f'(x) dx =$
 - A) g'(x) + c
 - B) g(x) + c
 - C) g(x) f(x) + c
 - D) g(f'(x)) + c
 - E) g(f(x)) + c

11)
$$\int x\sqrt{x-1} \, dx =$$

A) $\frac{2}{3}(x^2-x)^{\frac{3}{2}} + c$
B) $\frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + c$
C) $\frac{5}{2}(x-1)^{\frac{5}{2}} + \frac{3}{2}(x-1)^{\frac{3}{2}} + c$
D) $\frac{1}{3}x^2(x-1)^{\frac{3}{2}} + c$
E) $\frac{1}{2}(x-1)^4 + c$

12)
$$\int x^{3} \cos x^{4} dx =$$

A) $\frac{x^{4}}{4} \sin x^{4} + c$
B) $-\frac{1}{4} \sin x^{4} + c$
C) $-\frac{x^{4}}{4} \sin x^{4} + c$
D) $\frac{1}{4} \sin x^{4} + c$
E) $\frac{x^{4}}{4} \sin \frac{x^{5}}{5} + c$

13)
$$\int \sin 5x \, dx =$$

A) $\cos 5x + c$
B) $-5 \cos 5x + c$
C) $-\frac{1}{5} \cos 5x + c$
D) $\frac{1}{5} \cos 5x + c$
E) $5 \cos 5x + c$

14)
$$\int (\tan^3 x) (\sec^2 x) \, dx =$$

A) $\frac{1}{4} \tan^4 x + c$
B) $\frac{1}{2} \sec^2 x + c$
C) $\frac{1}{2} \tan^2 (x) + c$
D) $4 \tan^4 x + c$
E) $\frac{\sec^3 x \tan^4 x}{12} + c$

15)
$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx =$$

A)
$$\frac{\cos^2 \sqrt{x}}{2x} + c$$

B)
$$2 \sin \sqrt{x} + c$$

C)
$$\frac{1}{2} \sin \sqrt{x} + c$$

D)
$$-\frac{1}{2} \sin \sqrt{x} + c$$

E)
$$-2 \sin \sqrt{x} + c$$

16)
$$\int \sin 2\theta \cos 2\theta \, d\theta =$$

A)
$$\frac{1}{4} \sin^2 2\theta + c$$

B)
$$\frac{1}{2} \sin^2 2\theta + c$$

C)
$$-\frac{1}{4} \sin^2 2\theta + c$$

D)
$$-\frac{1}{2} \sin^2 2\theta + c$$

E)
$$\sin^2 2\theta + c$$

17)
$$\int \frac{d\theta}{\cos^2 2\theta} =$$

A) $\frac{1}{2} \cot 2\theta + c$
B) $\frac{1}{2} \tan 2\theta + c$
C) $-\frac{2}{\cos 2\theta} + c$
D) $2 \tan 2\theta + c$
E) $-\frac{1}{2} \cot 2\theta + c$

18)
$$\int \sec^3 x \tan x \, dx =$$

A)
$$\frac{\tan^2 x}{2} + c$$

B)
$$\frac{\sec^2 x}{2} + c$$

C)
$$\frac{\sec^4 x \tan^2 x}{8} + c$$

D)
$$\frac{\sec^4 x}{4} + c$$

E)
$$\frac{\sec^3 x}{3} + c$$

19)
$$\int \frac{\sin \frac{3}{\theta}}{\theta^2} d\theta =$$

A)
$$\frac{3\cos^2\left(\frac{3}{\theta}\right)}{\theta^3} + c$$

B)
$$-\frac{1}{3}\cos \frac{3}{\theta} + c$$

C)
$$\frac{\sin^2\left(\frac{3}{\theta}\right)}{6\theta^3} + c$$

D)
$$-3\cos \frac{3}{\theta} + c$$

E)
$$\frac{1}{3}\cos \frac{3}{\theta} + c$$

20)
$$\int \cos(\cos x) \sin x \, dx =$$

A)
$$-\sin(\sin x) + c$$

B)
$$-\sin(\cos x) + c$$

C)
$$\cos(\cos x) + c$$

D)
$$\sin(\cos x) + c$$

E)
$$-\sin x + c$$

21)
$$\int \frac{\cos 2\theta}{\sin^2 2\theta} d\theta =$$

A) $-\frac{1}{3 \sin^3 2\theta} + c$
B) $-\frac{1}{6 \sin^3 2\theta} + c$
C) $2 \sin 2\theta + c$
D) $\frac{1}{2 \sin 2\theta} + c$
E) $-\frac{1}{2 \sin 2\theta} + c$