Unit \#6: Parametric and Polar Derivatives
Topic: Parametric Derivatives
Objective: SWBAT solve free response questions using the derivatives of parametric equations.

Warm Up \#2:

1989 BC \#4 (NO CALCULATOR)
Consider the curve given by the parametric equations $x=2 t^{3}-3 t^{2}$ and $y=t^{3}-12 t$.
a) Find $\frac{d y}{d x}$, in terms of t.
b) Write an equation for the line tangent to the curve at the point where $t=-1$.
c) Find the x - and y-coordinates for each critical point on the curve and identify each point as having a vertical or horizontal tangent.

Problem Set \#2: Read each question carefully and show all work.

1. 1984 BC \#2 NO CALCULATOR

The path of a particle is given for time $t>0$ by the parametric equations $x=t+\frac{2}{t}$ and $y=3 t^{2}$.
a) Find the coordinates of each point on the path where the velocity of the particle in the x direction is zero.
b) Find $\frac{d y}{d x}$ when $t=1$.
c) Find $\frac{d^{2} y}{d x^{2}}$ when $y=12$.
2. 2003 BC \#4 Form B (NO CALCULATOR)

A particle moves in the $x y$-plane so that the position of the particle at any time t is given by

$$
x(t)=2 e^{3 t}+e^{-7 t} \quad \text { and } \quad y(t)=3 e^{3 t}-e^{-2 t}
$$

a) Find $\frac{d y}{d x}$ in terms of t, and find $\lim _{t \rightarrow \infty} \frac{d y}{d x}$.
b) Find each value t at which the line tangent to the path of the particle is horizontal, or explain why none exists.
c) Find each value t at which the line tangent to the path of the particle is vertical, or explain why none exists.

3. CALCULATOR

A particle moves in the $x y$-plane so that its position at any time , $0 \leq t \leq \pi$, is given by

$$
x(t)=\frac{t^{2}}{2}-\ln (1+t) \quad \text { and } \quad y(t)=3 \sin t
$$

a) Sketch the path of the particle in the $x y$-plane below. Indicate the direction of motion along the path.

b) At what time $t, 0 \leq t \leq \pi$, does $x(t)$ attain its minimum value? What is the coordinate of the point at this time?
c) At what time $t, 0<t<\pi$, is the particle on the y-axis?
4. 1974 BC \#5 (NO CALCULATOR)

Given the parametric equations $x=2(\theta-\sin \theta)$ and $y=2(1-\cos \theta)$:
a) Find $\frac{d y}{d x}$ in terms of θ.
b) Find an equation of the line tangent to the graph $\theta=\pi$.
c) Find an equation of the line tangent to the graph $\theta=2 \pi$.
d) Find $\frac{d^{2} y}{d x^{2}}$ in terms of θ.

Answers

WARM UP

a) $\frac{t^{2}-4}{2 t^{2}-2 t}$
b) $y-11=-\frac{3}{4}(x+5)$
c) $(-28,16)$ horizontal, $(0,0)$ vertical, $(-1,-11)$ vertical, $(4,-16)$ horizontal

1. a) $(2 \sqrt{2}, 6)$
b) -6
c) -24
2. a) $\frac{9 e^{3 t}+2 e^{-2 t}}{6 e^{3 t}-7 e^{-7 t}}$; limit is $\frac{3}{2}$
b) none
c) $t=\frac{1}{10} \ln \left(\frac{7}{6}\right)$
3. a) graph
b) $t=0.618 ;(-0.290,1.738)$
c) $t=1.286$
4. a) $\frac{\sin \theta}{1-\cos \theta}$
b) $y=4$
c) $x=4 \pi$
d) $-\frac{1}{(1-\cos \theta)^{2}}$
