Unit \#3: Differential Equations
Topic: Separable Differential Equations Objective: SWBAT find a particular solution to a separable differential equation.

Warm Up \#2:

Find the particular solution to the equation $\frac{d y}{d x}=e^{x}-6 x^{2}$ whose graph passes through the point $(1,0)$.

We cannot find a unique or particular solution to a differential equation unless we are given further information. If the general solution to a first-order differential equation is continuous, then all that is needed to write a particular solution is a single point. This given point is called the initial condition.

Example: 1985 BC \#4
Given the differential equation $\frac{d y}{d x}=\frac{-x y}{\ln y}, y>0$.
(a) Find the general solution of the differential equation.
(b) Find the particular solution that satisfies the condition that $y=e^{2}$ when $x=0$. Express your answer in the form $y=f(x)$.
(c) Explain why $x=2$ is not in the domain of the solution found in part (b).

Problem Set \#2:

1) 2000 AB 6

$$
\text { Consider the differential equation } \frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}} \text {. }
$$

(a) Find a solution $y=f(x)$ to the differential equation satisfying $f(0)=\frac{1}{2}$.
(b) Find the domain and range of the function f found in part (a).
2) 2005 AB \#6 (PART)

Consider the differential equation $\frac{d y}{d x}=-\frac{2 x}{y}$. Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(1)=-1$.
3) 2002 (Form B) BC \#5

Consider the differential equation $\frac{d y}{d x}=\frac{3-x}{y}$.
(a) Let $y=f(x)$ be the particular solution to the given differential equation for $1<x<5$ such that the line $y=-2$ is tangent to the graph of f. Find the x coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at the point. Justify your answer.
(b) Let $y=g(x)$ be the particular solution to the given differential equation for $-2<x<8$, with the initial condition $g(6)=-4$. Find $y=g(x)$.
4) Find the particular solution if $\frac{d y}{d x}=y \cos x$ and $y=3$ when $x=0$.

5) 1998 AB \#4 (Part)

 Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the intial condition $f(1)=4$.6) Find the particular solution $y=f(x)$ to the differential equation $\frac{d y}{d x}=\frac{-x}{y e^{x^{2}}}$ with the intial condition $f(0)=2$.
7) Find the particular solution $y=f(t)$ to the differential equation $\frac{d y}{d t}=\frac{1}{y^{2}}$ with the intial condition $y(2)=3$.
8) Find $f(t)$ by solving the separable differential equation $\frac{d y}{d t}=t y$ with the intial condition $y(2)=1$.

Answer Key:

1) a) $y=\frac{1}{2} \ln \left(2 x^{3}+e\right)$
b) domain: $x>\left(-\frac{e}{2}\right)^{1 / 3}$ range: $(-\infty, \infty)$
2) $y=-\sqrt{-2 x^{2}+3}$
3) a) $(3,-2)$ local max
b) $y=-\sqrt{6 x-x^{2}+16}$
4) $y=3 e^{\sin x}$
5) $y=\sqrt{x^{3}+x+14}$
6) $y=\sqrt{e^{-x^{2}}+3}$
7) $y=(3 t+21)^{1 / 3}$
8) $y=e^{\frac{1}{2} t^{2}-2}$
