Unit #5: Improper Integrals

Topic: One-Sided Improper Integrals

Objective: SWBAT integrate improper integrals by using limits.

Warm Up #3:

Evaluate each of the following using your calculator:

1)
$$\int_{1}^{100} \frac{1}{x} dx$$

2)
$$\int_{1}^{1000} \frac{1}{x} dx$$

3)
$$\int_{1}^{1,000,000} \frac{1}{x} dx$$

Based on the values above what do you think $\int_{1}^{\infty} \frac{1}{x} dx$ equals?

4)
$$\int_{1}^{100} \frac{1}{x^2} dx$$

5)
$$\int_{1}^{1000} \frac{1}{x^2} dx$$

5)
$$\int_{1}^{1000} \frac{1}{x^2} dx$$
 6) $\int_{1}^{10,000} \frac{1}{x^2} dx$

Based on the values above what do you think $\int_{1}^{\infty} \frac{1}{x^2} dx$ equals?

Improper Integrals

There are two cases in which integrals are called improper integrals.

Case 1: One or both of the limits of the integral are ∞ or $-\infty$.

$$\int_{a}^{+\infty} f(x) dx, \int_{-\infty}^{b} f(x) dx, \text{ or } \int_{-\infty}^{+\infty} f(x) dx.$$

They are evaluated by rewriting the integral as a proper integral and then using limits.

1. If f(x) is continuous in the interval $[a, \infty)$, then: $\int_a^\infty f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx$

2. If
$$f(x)$$
 is continuous in the interval $(-\infty, b]$, then:
$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

Example #1:

Find the value of
$$\int_3^\infty \frac{1}{(x-2)^{3/2}} dx$$
.

Example #2:

Find the value of
$$\int_{-\infty}^{0} e^{-x} dx$$

Problem Set #3: Evaluate each of the following integrals and determine whether or not they converge or diverge.

1)	ι_{∞}	1	٦.,
1)	J_4	\sqrt{x}	ax

$$2) \int_{-\infty}^{0} 2e^{8x} dx$$

2)	ι_{∞}	1	da
3)	J_0	$1+x^{2}$	ax

$$4) \int_0^\infty \frac{e^x}{1+e^x} dx$$

5)
$$\int_{-\infty}^{2} \frac{2}{x^2 + 4} dx$$

$$6) \int_1^\infty \frac{1}{x^4} dx$$

$$7) \int_{1}^{\infty} \frac{2+x}{x^2} dx$$

8)
$$\int_{-\infty}^{1} \frac{dx}{(x-2)^2}$$

O)	ι _∞	х	dv
9)	J_0	$x^2 + 1$	ax

 $10) \int_{-\infty}^{0} e^{5x} dx$

$$11) \int_2^\infty \frac{dx}{x(\ln x)^2}$$

12) $\int_{-1}^{\infty} \frac{dx}{x^2 + 5x + 6}$

13)
$$\int_{-\infty}^{0} \frac{1}{(x-2)^3} \, dx$$

 $14) \int_1^\infty \frac{1}{\sqrt[4]{x}} dx$

Warm Up #4:

Find
$$\lim_{x\to 0} \frac{1-\cos^2(2x)}{x^2}$$

Sometimes an integral can be doubly improper.

3. If f(x) is continuous in the interval $(-\infty, \infty)$, then:

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx + \lim_{c \to \infty} \int_{b}^{c} f(x)dx$$

where b is any number.

Note as well that this requires **BOTH** of the integrals to be convergent in order for this integral to also be convergent.

If **either** of the two integrals is **divergent** then so is this integral.

Example #3:

Find the value of
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

Problem Set #4: Evaluate each of the following integrals and determine whether or not they converge or diverge.

15)	$\int_{-\infty}^{-\infty}$	$e^{2x}dx$

$$16) \, \int_{-\infty}^{\infty} \frac{2x}{(x^2+1)^2} \, dx$$

$$17) \int_{-\infty}^{\infty} 4x e^{-5x^2} dx$$

$$18) \, \int_{-\infty}^{\infty} \frac{6x^3}{(x^4+1)^2} \, dx$$

19)	$\int_{-\infty}^{\infty} (2$	$\frac{1}{2} - x$	$\frac{1}{4}$) dx
_	<u> </u>		-

$$20) \int_{-\infty}^{\infty} e^{-\frac{x}{4}} dx$$

$$21) \int_{-\infty}^{\infty} \frac{x}{1+x^2} dx$$

$$22) \int_{-\infty}^{\infty} \frac{x}{1+x^4} dx$$

(Hint: Think of denominator as $1 + (x^2)^2$

Answers:

1. D 2. ¼ 3.
$$\frac{\pi}{2}$$
 4. D 5. $\frac{3\pi}{4}$ 6. $\frac{1}{3}$ 7. D 8. 1 9. D 10. $\frac{1}{5}$ 11. $\frac{1}{ln2}$ 12. ln2 13. $-\frac{1}{8}$ 14. D 15. D 16. 0 17. 0 18. 0 19. D 20. D 21. D 22. 0

Date ____

Homework - More Practice with Improper Integrals

Directions: Evaluate each of the following integrals.

$$1) \int_{e}^{\infty} \frac{1}{x(\ln x)^3} dx$$

Answer: 1/2

$$2) \int_{-\infty}^{-1} \frac{1}{\sqrt{2-x}} dx$$

Answer: Diverges

3)
$$\int_0^\infty \frac{16arctanx}{1+x^2} dx$$

Answer: $2\pi^2$

$$4) \int_{-\infty}^{0} e^{x+2} dx$$

Answer: e^2

5)
$$\int_{-1}^{\infty} \frac{3}{(3x+5)^4} dx$$

Answer: 1/24

6)
$$\int_0^\infty cosxdx$$

Answer: -1

7)
$$\int_{1}^{\infty} \frac{1}{\sqrt[4]{x^3}} dx$$

Answer: diverges

8)
$$\int_{-\infty}^{\infty} x e^{-x^2} dx$$

Answer: 0