Unit \#3: Differential Equations
Topic: Slope Fields
Objective: SWBAT graph a general solution to a differential equation by using a slope field. SWBAT match a slope field to the correct differential equation.

Warm Up \#3:

Find the particular solution to the equation $\frac{d y}{d x}=x^{2}$ whose graph passes through the point $(0,-1)$.

Definition:

A Slope Field is a graphical general solution to a differential equation.

Example \#1:

a) Draw a slope field for the differential equation: $\frac{d y}{d x}=x^{2}$ at the indicated points.
b) Draw a particular solution at $(0,-1)$.

Many times, differential equations are NOT explicit functions of a single variable, and sometimes they are not even solvable by analytic methods. That's where slope fields come in. \cdot

When drawing slope fields:

1) Draw the piece of the tangent line at a point long enough to see, but not so long that it interferes with the other tangent lines.
2) Be sure your slopes of $0,1,-1$, and ∞ are spot on. All other slopes must be at a steepness relative to these slopes and the others around it.

Example \#2: Consider the differential equation $\frac{d y}{d x}=\frac{y-1}{x^{2}}$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) Sketch the solution curve that passes through the point $(2,0)$.

Problem Set \#3:

1) Consider the differential equation $\frac{d y}{d x}=x^{4}(y-2)$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) While only part of the slope field in part (a) is drawn, it is defined at every point in the $x y$-plane. Describe all points in the $x y$-plane for which the slopes are negative.
2) a) Draw the slope field for the differential equation $\frac{d y}{d x}=x^{2} y$.

b) Sketch the solution curve that passes through the point $(0,-2)$.
3) Consider the differential equation $\frac{d y}{d x}=-\frac{2 x}{y}$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) Sketch the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=-1$.
4) Consider the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y}$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) Sketch the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=-2$?
5) Consider the differential equation $\frac{d y}{d x}=x+y$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) Sketch the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=1$?
6) Consider the differential equation $\frac{d y}{d x}=y-1$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) Sketch the particular solution $y=f(x)$ to the differential equation with the initial condition $f(2)=0$?

Warm Up \#4:

Consider the differential equation $\frac{d y}{d x}=\frac{x y}{2}$.
a) On the axes provided, sketch a slope field for the given differential equation.

b) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve $y=f(x)$ through the point $(1,1)$ and then use the equation to estimate the value of $f(1.2)$.
c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=1$ and then use your solution to find $f(1.2)$.
d) Was your estimate from part (b) an underestimate or an overestimate? Use your slope field to explain why.

Example \#3: Which of the following differential equations matches the slope field given?
A) $\frac{d y}{d x}=1+x$
B) $\frac{d y}{d x}=x^{2}$

Example \#4:

Which of the following could be the slope field for the differential equation $\frac{d y}{d x}=y^{2}-1$?
(A)

(B)

(C)

(D)

(E)

Problem Set \#4:

For 7-12, match each slope field with the equation that the slope field could represent.

7.

9.

11.

(A) $y=1$
(B) $y=x$
(D) $y=\frac{1}{6} x^{3}$
(E) $y=\frac{1}{x^{2}}$
(G) $y=\cos x$
(H) $y=\ln |x|$
8.

10.

12.

(C) $y=x^{2}$
(F) $y=\sin x$

For $13-16$, match the slope fields with their differential equations.
13.

15.

(A) $\frac{d y}{d x}=\frac{1}{2} x+1$
(B) $\frac{d y}{d x}=x-y$
(C) $\frac{d y}{d x}=y$
(D) $\frac{d y}{d x}=-\frac{x}{y}$

