Unit \#6: Parametric and Polar Derivatives
Topic: Arc Length
Objective: SWBAT find the arc length of a parametric curve

Warm Up \#3:

Write an integral that can be used to find the length of the curve $y=\ln (\sin x)$ from $x=1$ to $x=a$, where $1<a<\pi$.

Arc Length of a Parametric Curve

If a smooth curve $x=f(t), y=g(t), a \leq t \leq b$, is transversed exactly once as t increases from a to b, the curve's length is

$$
S=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example \#1: Find the length of the curve described by the following parametric equations on the given interval.

$$
x=3 \sin t \quad \text { and } \quad y=3 \cos t, \quad 0 \leq t \leq \pi
$$

Example \#2: Write an integral that can be used to find the length of the curve described by the following parametric equations on the given interval.

$$
x=\sin \left(t^{3}\right) \quad \text { and } \quad y=e^{5 t} \text { from } t=0 \text { to } t=\pi
$$

Problem Set \#3A: Find the length of the curve for each of the following without a calculator.

1. $x=8 \cos t+8 t \sin t, y=8 \sin t-8 t \cos t ; 0 \leq t \leq \frac{\pi}{2}$
2. $x=\frac{(2 t+3)^{3 / 2}}{3}, y=t+\frac{t^{2}}{2} ; 0 \leq t \leq 3$
3. $x=3 t-t^{3}, y=3 t^{2} ; 0 \leq t \leq 2$
4. $x=e^{t}-t, y=4 e^{t / 2} ;-8 \leq t \leq 3$

Problem Set \#3B: Find the length of the curve for each of the following with a calculator.
5. $x=1+e^{t}, y=t^{2} ;-3 \leq t \leq 3$
6. $x=\ln t, y=\sqrt{t+1} ; 1 \leq t \leq 5$
7. $x=t^{3}, y=t^{2}+1 ;-1 \leq t \leq 1$
8. $x=t^{2}+1, y=\sqrt{t+2} ;-1 \leq t \leq 2$
9. $x=t^{2}+3, y=$ cost $;$ from $(3,1)$ to $(7, \cos 2)$

Answers

1. π^{2}
2. $21 / 2$
3. 14
4. $e^{3}+11-e^{-8}$
5. 30.528
6. 1.931
7. 2.879
8. 5.204
9. 4.254
