Unit #6: Parametric and Polar Derivatives

Topic: Arc Length

Objective: SWBAT find the arc length of a parametric curve

Warm Up #3:

Write an integral that can be used to find the length of the curve y = ln(sinx) from x = 1 to x = a, where $1 < a < \pi$.

Arc Length of a Parametric Curve

If a smooth curve x = f(t), y = g(t), $a \le t \le b$, is transversed exactly once as t increases from a to b, the curve's length is

$$S = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Example #1: Find the length of the curve described by the following parametric equations on the given interval.

$$x = 3sint$$
 and $y = 3cost$, $0 \le t \le \pi$

Example #2: Write an integral that can be used to find the length of the curve described by the following parametric equations on the given interval.

$$x = sin(t^3)$$
 and $y = e^{5t}$ from $t = 0$ to $t = \pi$

Problem Set #3A: Find the length of the curve for each of the following **without** a calculator.

1.
$$x = 8cost + 8tsint$$
, $y = 8sint - 8tcost$; $0 \le t \le \frac{\pi}{2}$

2.
$$x = \frac{(2t+3)^{3/2}}{3}$$
, $y = t + \frac{t^2}{2}$; $0 \le t \le 3$

3.
$$x = 3t - t^3$$
, $y = 3t^2$; $0 \le t \le 2$

4.
$$x = e^t - t$$
, $y = 4e^{t/2}$; $-8 \le t \le 3$

Problem Set #3B: Find the length of the curve for each of the following **with** a calculator.

5.
$$x = 1 + e^t$$
, $y = t^2$; $-3 \le t \le 3$

6.
$$x = lnt$$
, $y = \sqrt{t+1}$; $1 \le t \le 5$

7.
$$x = t^3$$
 , $y = t^2 + 1$; $-1 \le t \le 1$

8.
$$x = t^2 + 1$$
, $y = \sqrt{t+2}$; $-1 \le t \le 2$

9.
$$x = t^2 + 3$$
, $y = cost$; $from (3,1) to (7, cos2)$

Answers

1. π^2 2. 21/2 3. 14 4. $e^3 + 11 - e^{-8}$ 5. 30.528 6. 1.931 7. 2.879 8. 5.204 9. 4.254