
Unit #10: Applications of Differentiation*Topic:* Extreme Values*Objective:* SWBAT identify the extrema of a function on an interval by using the derivative.

Warm Up #3:

Six graphs of functions are below, along with six graphs of derivatives. Match the graph of each function with the graph of its derivative.

Original Functions:

Now that we know how to find derivatives, we will use them to analyze the graphs of functions.

Example #1: Given the function $f(x) = x^5 - \frac{5}{3}x^3 - 1$ on the interval [-2,2].

(a) Find all the critical values of f(x).

(b) Determine whether each critical value found in part (a) is a relative minimum, maximum, or neither. Explain your reasoning.

(c) Does *f*(*x*) have an absolute maximum or minimum point? Show the work that justifies your answer.

Example #2: Given $g(x) = \sqrt[3]{x^2 - x - 2}$ on the interval [-3, 6].

(a) Find all the critical values of f(x). (HINT: Be Verrrrrry Observant!!)

(b) Determine whether each critical value found in part (a) is a relative minimum, maximum, or neither. Explain your reasoning.

(c) Does f(x) have an absolute maximum or minimum point? Show the work that justifies your answer.

Problem Set #3: Find all absolute and relative extrema of the following functions. Show al necessary steps. **NO CALCULATOR!!**

1) $f(t) = 5t^{2/3} + t^{5/3}$; [-1,8]	2) $y = xe^{2x}$; [-1,2]
$\begin{bmatrix} 1 \\ 1 \end{bmatrix} f(t) = 5t^{-1} + t^{-1} ; \begin{bmatrix} -1, 0 \end{bmatrix}$	[2] y = xe, $[-1, 2]$
3) $g(t) = \sqrt{t} (1-t); t \ge 0$	4) $f(x) = \sqrt[3]{x^2 - x}$; $(-\infty, \infty)$

Honors Precalculus Unit #10 Lesson 3

5) $y = 2x^3 - 3x^2 - 12x + 1$; [-2,3]	6) $f(x) = (x^2 - 1)^3$; [-1,2]
$\begin{bmatrix} 5 \\ y \end{bmatrix} = 2x = 5x = 12x + 1, \begin{bmatrix} -2 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix} f(x) = (x - 1) , \begin{bmatrix} -1,2 \end{bmatrix}$
2/2	24
7) $f(x) = 3x^{2/3} - 2x$; [-1,2]	8) $g(x) = \frac{2x}{x^2 + 1}$; [-2,2]

Answer Key	
1) $x = 0$ rel min	2) $x = -\frac{1}{2} rel min$
abs min is 0 at $x = 0$	$abs min is -\frac{1}{e^2} at x = -1$
abs max is 52 at $x = 8$	$abs max is 2e^4 at x = 2$
3) $x = \frac{1}{3} rel max$	4) $x = \frac{1}{2}$ rel min, $x = 0$ and 1 neither
abs min is 0 at x = 0	no abs min
no abs max	no abs max
5) $x = 2 rel \min and x = -1 rel \max abs \min is - 19 at x = 2 abs \max is 8 at x = -1$	6) $x = 0$ rel min and $x = 1$ neither abs min is -1 at $x = 0$ abs max is 27 at $x = 2$
7) $x = 0$ rel min and $x = 1$ rel max	8) $x = -1$ rel min and $x = 1$ rel max
abs min at $x = 2$	abs min is -2 at $x = -1$
abs max is at $x = -1$	abs max is 2 at $x = 1$