Unit \#1: Integration Review
Topic: Initial Value Problems
Objective: SWBAT find a particular solution to an indefinite integral by using an initial value.

## Warm Up \#3:

The volume $V$ of a balloon is changing with respect to time $t$ at a rate given by $\frac{d V}{d t}=3 t^{1 / 2}+\frac{1}{4} t f t^{3} / \mathrm{sec}$. If, at $t=4$, the volume is $20 f t^{3}$, what does $V$ equal?

An initial-value problem is a differential equation together with enough additional conditions to specify the constants of integration that appear in the general solution in order to obtain a particular solution.

Let's try another one:
The acceleration of a particle at time $t>0$ moving along the $x$-axis is $a(t)=3 t+2 \mathrm{ft} / \mathrm{sec}^{2}$. If at $t=1$ seconds the velocity, $v(t)=4 \mathrm{ft} / \mathrm{sec}$ and the position, $x(t)=6 \mathrm{ft}$, then what is $x(2)$ ?

Problem Set \#3: Find the particular solution for each of the following differential equations.

1) If $f^{\prime}(x)=12 x^{2}-6 x+1, f(1)=5$, then find $f(0)$.
2) If $\frac{d x}{d t}=\frac{4}{t}-\frac{1}{t^{4}}+8$ and $x=4$ when $t=1$. Find $x(t)$.
3) If $\frac{d^{2} y}{d x^{2}}=24 x^{2}-10$ when $x=1, \frac{d y}{d x}=3$, and $y=5$. Find the specific solution for $y$.
4) If $f^{\prime}(x)=6 e^{x}-\cos x$, when $y=4$ and $x=0$, then find the particular solution for $f(x)$.
5) If $\frac{d y}{d x}=9 \sec ^{2} x-\frac{1}{5 \sqrt{x}}$, when $y=5$ and $x=0$, then find $y$.
6) If $f^{\prime}(x)=x(15 x-6)$, when $y=4$ and $x=1$, then find $y(2)$.
7) If $\frac{d V}{d t}=6$ secttant $+6 t-3 e^{t}$ and $v(0)=5$, then find $v(t)$.
8) The acceleration of a particle moving along the $x$-axis at time $t>0$ is given by $a(t)=\frac{1}{t^{2}}$. When $t=1$ second, the particle is at $x=2$ and has a velocity of -1 unit per second. If $x(t)$ is the particle's position, then what is the particles position when $t=e$ ?
9) A particle moves along the $x$ - axis so that its velocity at any time $t \geq 0$ is given by $v(t)=1-\sin (2 \pi t)$.
a) Find the acceleration $a(t)$ of the particle at any time $t$.
b) Find all values of $t, 0 \leq t \leq 2$, for which the particle is at rest.
c) Find the position $x(t)$ of the particle at any time $t$ if $x(0)=0$.
10) Given the acceleration, $a(t)=-4 \sin 2 t$, with initial velocity $v(0)=2$, and the initial position of the body as $s(0)=-3$. Find the body's position at time $t$.

## Answer Key:

| 1) $f(0)=3$ | 2) $x(t)=4 \ln \|t\|+\frac{1}{3 t^{3}}+8 t-\frac{13}{3}$ |
| :--- | :--- |
| 3) $f(x)=2 x^{4}-5 x^{2}+5 x+3$ | 4) $f(x)=6 e^{x}-\sin x-2$ |
| 5) $y=9 \tan x+\frac{2}{5} x^{1 / 2}+5$ | 6) $y(2)=30$ |
| 7) $v(t)=6 \operatorname{sect}+3 t^{2}-3 e^{t}+2$ | 8) $x(e)=1$ |
| 9) a) $a(t)=-2 \pi \cos (2 \pi t)$ <br> b) $t=\frac{1}{4}, \frac{5}{4}$ <br> c) $x(t)=t+\frac{\cos 2 \pi t}{2 \pi}-\frac{1}{2 \pi}$ | 10) $s(t)=\sin (2 t)-3$ |

