Unit #1: Integration Review *Topic:* Initial Value Problems *Objective: SWBAT find a particular solution to an indefinite integral by using an initial value.*

Warm Up #3:

The volume *V* of a balloon is changing with respect to time *t* at a rate given by $\frac{dV}{dt} = 3t^{1/2} + \frac{1}{4}t ft^3$ /sec. If, at t = 4, the volume is $20ft^3$, what does *V* equal?

An *initial-value problem* is a differential equation together with enough additional conditions to specify the constants of integration that appear in the general solution in order to obtain a *particular solution*.

Let's try another one:

The acceleration of a particle at time t > 0 moving along the x - axis is $a(t) = 3t + 2 ft/sec^2$. If at t = 1 seconds the velocity, v(t) = 4 ft/sec and the position, x(t) = 6 ft, then what is x(2)?

Problem Set #3: Find the particular solution for each of the following differential equations.

1) If
$$f'(x) = 12x^2 - 6x + 1$$
, $f(1) = 5$, then find $f(0)$.
2) If $\frac{dx}{dt} = \frac{4}{t} - \frac{1}{t^4} + 8$ and $x = 4$ when $t = 1$. Find $x(t)$.
3) If $\frac{d^2y}{dx^2} = 24x^2 - 10$ when $x = 1$, $\frac{dy}{dx} = 3$, and $y = 5$. Find the specific solution for y .
4) If $f'(x) = 6e^x - \cos x$, when $y = 4$ and $x = 0$, then find the particular solution for $f(x)$.

9) A particle moves along the $x - axis$ so that its velocity at any time $t \ge 0$ is given by $v(t) = 1 - sin(2\pi t)$.
a) Find the acceleration $a(t)$ of the particle at any time t . b) Find all values of t , $0 \le t \le 2$, for which the particle is at rest. c) Find the position $x(t)$ of the particle at any time t if $x(0) = 0$.
10) Given the acceleration, $a(t) = -4sin2t$, with initial velocity $v(0) = 2$, and the initial position of the body as $s(0) = -3$. Find the body's position at time t .

Answer Key:

1) $f(0) = 3$	2) $x(t) = 4ln t + \frac{1}{3t^3} + 8t - \frac{13}{3}$
3) $f(x) = 2x^4 - 5x^2 + 5x + 3$	4) $f(x) = 6e^x - sinx - 2$
5) $y = 9tanx + \frac{2}{5}x^{1/2} + 5$	6) $y(2) = 30$
7) $v(t) = 6sect + 3t^2 - 3e^t + 2$	8) $x(e) = 1$
9) a) $a(t) = -2\pi cos(2\pi t)$	10) $s(t) = sin(2t) - 3$
b) $t = \frac{1}{4}, \frac{1}{4}$	
C) $x(t) = t + \frac{1}{2\pi} - \frac{1}{2\pi}$	