Unit \#8: Taylor Polynomials and Power Series
Topic: Power Series
Objective: SWBAT find the interval of convergence for a given power series.

Warm Up 茾3:

Use a third-degree Taylor approximation of e^{x} for x near 0 to find $\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$, then compare it to the actual limit at zero.

Now, what if we try to do the same thing to find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

Power Series

If x is a variable, then an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+\cdots
$$

is called a power series.

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots a_{n}(x-c)^{n}+\cdots
$$

is a power series centered at c, where $a_{0}, a_{1}, a_{2}, \ldots$ and c are real numbers.

The major characteristic of a power series is that it involves a variable, and its convergence depends on the value(s) that x takes.

A power series may converge for some values of x and diverge for others.
Each power series has an interval of convergence, that is, the set of values of x for which the power series converges.

For a power series centered at c, ONE of the following MUST be true:

1) The series converges only at c and R is 0 .
(ALL power series converge at their center!!)
2) The series converges for ALL x and R is ∞.
3) There exists an $R>0$ such that the series converges for $|x-c|<R$ and diverges for $|x-c|>R$. The corresponding domain $[(c-R),(c+R)]$, is called the interval of convergence or the domain of the power series.
${ }^{* *} R$ is called the radius of convergence of the power series**

Finding the Interval of Convergence

For a general power series, the interval of convergence is determined by using the RATIO TEST.

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

provided that it exists or is equal to ∞.
The endpoints of the interval must be checked individually using one of the tests for convergence.

Example \#1: Find the values of x for which the series $\sum_{n=0}^{\infty}(3 x)^{n}$. State the radius of convergence.

Example \#2: Find the interval of convergence for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 2^{n}}$.

Practice Problems: Find the radius and interval of convergence for each of the following power series.

1. $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{3^{n}}$
2. $\sum_{n=0}^{\infty} \frac{(2 x-1)^{n}}{n!}$
3. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$
4. $\sum_{n=2}^{\infty} \frac{(5 x)^{n}}{n^{3}}$
5. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$
6. $\sum_{n=0}^{\infty} n!(x-3)^{n}$
7. $\sum_{n=0}^{\infty} \frac{(x-5)^{n+1}}{n+1}$
8) $\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{3^{n}}$

Answer Key

1) $0<x<6 ; R=3$	2) Convergs for all $x ; R=\infty$
3) $-1 \leq x<5 ; R=3$	4) $-\frac{1}{5} \leq x \leq \frac{1}{5} ; R=\frac{1}{5}$
5) Converges for all $x ; R=\infty$	6) Converges at $x=3$ only $; R=0$
7) $4 \leq x<6 ; R=1$	8) $-4<x<2 ; R=3$

