Unit \#10: Applications of Differentiation
Topic: First Derivative Test
Objective: SWBAT identify where a function in increasing/decreasing by using the first derivative.

Warm Up \#4:

CALCULATOR ALLOWED!

Graph the derivative of $f(x)$ and then use the graph to identify:
(a) Where $f(x)$ is increasing? decreasing? Explain your reasoning.

$$
f(x)=\left(x^{2}-3\right)\left(x^{2}+2 x\right) ; x \leq 2
$$

(b) Does $f(x)$ have any horizontal tangent lines? Explain your reasoning.
(c) Does $f(x)$ have any minimum points? maximum points? Justify your answers.

Increasing, Decreasing, and the $1^{\text {st }}$ Derivative Test

What does it sound like??	What does it look like??
If \qquad then f is \qquad	
If \qquad then f is \qquad	
If \qquad then f is \qquad	
At what values of x can the graph of a function change its increasing/decreasing/constant status??	

What does it sound like??	What does it look like??
If $f^{\prime}(x)$ changes from \qquad at $x=c$, then f has a \qquad at $x=c$.	
If $f^{\prime}(x)$ changes from \qquad at $x=c$, then f has a \qquad at $x=c$.	
If $f^{\prime}(x)$ \qquad change signs at $x=c$, then f \qquad have a \min / \max at $x=c$.	
When using the First Derivative Test, you MUST write a concluding statement that indicates the type of sign change at $x=c$.	

Practice Problems: Use the first derivative test to identify where the function is increasing/decreasing/constant and where the relative extrema are. Justify your answers.

1) $f(x)=x\left(4+x^{2}-\frac{x^{4}}{5}\right)$ CALCULATOR ALLOWED!
2) $y=\left(x^{2}-4\right)^{2 / 3}$
3) $g(x)=1+x^{2}-2 x^{4}$
4) $h(x)=x \sqrt{8-x^{2}}$
5) $f(x)=-2 x^{3}+6 x^{2}-3$
6) $y=2 x^{4}-4 x^{2}+1$
7) $g(x)=x^{4}-\frac{2}{3} x^{3}$
8) $y=3 x^{4}-4 x^{3}-12 x^{2}+5$

Answer Key:

1) decr: $(-\infty,-2)(2, \infty)$; incr: $(-2,2)$; rel min at $x=-2$; rel max at $x=2$
2) decr: $(-\infty,-2)(0,2)$; incr: $(-2,0)(2, \infty)$; rel min at $x= \pm 2$; rel max at $x=0$
3) decr: $\left(-\frac{1}{2}, 0\right)\left(\frac{1}{2}, \infty\right)$; incr: $\left(-\infty,-\frac{1}{2}\right)\left(0, \frac{1}{2}\right)$; rel min at $x=0$; rel max at $x= \pm \frac{1}{2}$
4) decr: $(-\sqrt{8},-2)(2, \sqrt{8})$; incr: $(-2,2)$; rel min at $x=-2$; rel max at $x=2$
5) decr: $(-\infty, 0)(2, \infty)$; incr: $(0,2)$; rel min at $x=0$; rel max at $x=2$

6) decr: $(-\infty,-1)(0,1)$; incr: $(-1,0)(1, \infty)$; rel min at $x= \pm 1$; rel max at $x=0$
7) decr: $\left(0, \frac{1}{2}\right)$; incr: $\left(\frac{1}{2}, \infty\right)$; rel min at $x=\frac{1}{2}$
8) decr: $(-\infty,-1)(0,2)$; incr: $(-1,0)(2, \infty)$; rel min at $x=-1$ and 2 ; rel max at $x=0$

