Unit \#1: Integration Review
Topic: The Fundamental Theorem of Calculus
Objective: SWBAT use the Fundamental Theorem of Calculus to integrate a function. SWBAT use the Fundamental Theorem of Calculus to find the derivative of an Integral.

Warm Up \#4:

Find the average value of $f(x)=(x-3)^{2}$ over $[2,6]$.

The Fundamental Theorem of Calculus (FTC) is considered the most important computational study in the history of mathematics. It describes the fundamental relationship between differentiation and integration.

Part 1:

If f is continuous at every point of $[a, b]$, and if F is any antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Part 2:

If f is continuous on $[a, b]$, then the function $F(x)=\int_{a}^{x} f(t) d t$ has a derivative at every point in $[a, b]$ and

$$
\frac{d F}{d x}=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

This is the derivative of an integral where the lower limit is a constant and the derivative matches upper limit of integration.

Problem Set \#4: Evaluate each of the following and then identify which part of the FTC is being used.

1) $\int_{1}^{3}\left(2 x^{2}-12 x+13\right) d x$	2) $\frac{d}{d x}\left[\int_{2}^{x} \sqrt{1+t^{2}} d t\right]$
3) $\int_{-4}^{-1}-\frac{4}{x^{3}} d x$	

7) $\int_{-1}^{1} e^{2 x-2} d x$	$8) \int_{-\pi / 4}^{-\pi / 6} 2 \cos x d x$

13) $\int_{-1}^{\ln 2}\left(e^{x}-1\right) d x$	$14) \frac{d}{d x}\left[\int_{2}^{5 x \frac{\sqrt{1+u^{2}}}{u}} d u\right]$
15$] \frac{d}{d x}\left[\int_{2}^{x}\left(3 t+\cos ^{2} t\right) d t\right]$	

Answer Key:

1) $-\frac{14}{3}$	2) $\sqrt{1+x^{2}}$	3) $\frac{15}{8}$	4) $5-\ln 6$
5$)-4 x^{3}+4 x$	$6)-12 \cos ^{2}(2 x)$	7) $\frac{1}{2}-\frac{1}{2 e^{4}}$	$8)-1+\sqrt{2}$
9) 1	10) $2 x \cot 3 x^{2}$	$11)-3 \ln \left(1+9 x^{2}\right)$	$12) 0$
13$) 1-\ln 2-\frac{1}{e}$	$14) \frac{\sqrt{1+25 x^{2}}}{x}$	$15) x+\cos ^{2} x$	$16) \frac{1}{4} \ln 5$

