Unit #1: Integration Review

Topic: The Fundamental Theorem of Calculus

Objective: SWBAT use the Fundamental Theorem of Calculus to integrate a function.

SWBAT use the Fundamental Theorem of Calculus to find the derivative of an

Integral.

Warm Up #4:

Find the average value of $f(x) = (x - 3)^2$ over [2, 6].

The *Fundamental Theorem of Calculus* (FTC) is considered the most important computational study in the history of mathematics. It describes the fundamental relationship between differentiation and integration.

Part 1:

If f is continuous at every point of [a, b], and if F is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Part 2:

If f is continuous on [a, b], then the function $F(x) = \int_a^x f(t)dt$ has a derivative at every point in [a, b] and

$$\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

This is the derivative of an integral where the lower limit is a **constant** and the derivative matches upper limit of integration.

Problem Set #4: Evaluate each of the following and then identify which part of the FTC is being used.

1)
$$\int_{1}^{3} (2x^2 - 12x + 13) dx$$

$$2) \frac{d}{dx} \left[\int_2^x \sqrt{1 + t^2} \, dt \right]$$

3)
$$\int_{-4}^{-1} -\frac{4}{x^3} dx$$

4)
$$\int_{1/2}^{3} (2 - \frac{1}{x}) dx$$

5)
$$\frac{d}{dx} \left[\int_{-1}^{x^2} (-2t + 2) dt \right]$$

6)
$$\frac{d}{dx} \left[\int_{2x}^{1} (6\cos^2 t) dt \right]$$

$1 \cdot 1 \cdot 1 = 1 \cdot $	7)	\int_{-1}^{1}	$e^{2x-2}dx$
--	----	-----------------	--------------

8) $\int_{-\pi/4}^{-\pi/6} 2\cos x dx$

9)
$$\int_{-2}^{-1} \frac{2}{x^2} dx$$

 $10) \frac{d}{dx} \left[\int_6^{x^2} \cot 3t \ dt \right]$

$$11) \frac{d}{dx} \left[\int_{3x}^{6} \ln(1+t^2) dt \right]$$

 $12) \int_0^4 \frac{1 - \sqrt{u}}{\sqrt{u}} du$

13) $\int_{-1}^{\ln 2} (e^x - 1) dx$	13)	$\int_{-1}^{ln2} (e^x -$	-1)dx
--------------------------------------	-----	--------------------------	-------

 $14) \ \frac{d}{dx} \left[\int_2^{5x} \frac{\sqrt{1+u^2}}{u} \ du \right]$

$$15) \frac{d}{dx} \left[\int_2^x (3t + \cos^2 t) \, dt \right]$$

16) $\int_0^3 \frac{dx}{4x+3}$

Answer Key:

1) $-\frac{14}{3}$	2) $\sqrt{1+x^2}$	3) $\frac{15}{8}$	4) 5 – <i>ln</i> 6
$5) -4x^3 + 4x$	6) $-12\cos^2(2x)$	7) $\frac{1}{2} - \frac{1}{2e^4}$	8) $-1 + \sqrt{2}$
9) 1	10) $2xcot3x^2$	$11) -3ln(1+9x^2)$	12) 0
13) $1 - ln2 - \frac{1}{e}$	14) $\frac{\sqrt{1+25x^2}}{x}$	$15) x + cos^2 x$	16) $\frac{1}{4}ln5$