Unit \#8: Taylor Polynomials and Power Series
Topic: Taylor and Maclaurin Series
Objective: SWBAT manipulate various Taylor and Maclaurin series.

Warm Up \#\# \#:

Find the first four nonzero terms for the Taylor series $f(x)=e^{5 x}$ centered at $c=2$.

Taylor and Maclaurin Series

We will now look at a special family of power series that we are already acquainted with.
Taylor Series centered at $\boldsymbol{x}=\boldsymbol{c}$:
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots \frac{f^{n}(c)}{n!}(x-c)^{n}+\cdots=\sum_{n=0}^{\infty} \frac{f^{n}(c)}{n!}(x-c)^{n}$
Once again, if $c=0$ the series is called a Maclaurin Series.
${ }^{* *}$ Notice that now we use an equal sign instead of an approximation sign**
These series can be easily manipulated to suit other similar functions.

1) Substitute into a series for x
2) Multiply or divide the series by a constant and/or a variable
3) Add or subtract two series
4) Differentiate or integrate a series (may change the interval of convergence, but not the radius of convergence)
5) Recognize the series as the sum of a geometric power series

Simple Substitutions:
Example \#1: Find the first four nonzero terms and the general term for the Taylor series $f(x)=e^{5 x}$ centered at $c=2$. (HINT: Refer back to the WARM UP)

Example \#2: Find a Maclaurin Series for $f(x)=\frac{\cos (3 x)}{x}$. Give the first four nonzero terms and the general term.

Practice Problems: Find the first four nonzero terms and the general term for each of the following Taylor series using a series that you already know.

1) $f(x)=\ln (x+1)$
2) $f(x)=e^{x / 2}$
3) $g(x)=\sin \left(\frac{1}{2} x\right)$
4) $f(x)=\frac{1}{2-x}$ centered at $c=1$
5) $g(x)=\frac{\ln (1+x)}{x}$
6) $f(x)=1-e^{-2 x}$
7) $f(x)=\frac{e^{x}+e^{-x}}{2}$
8) $g(x)=\frac{3 x}{1-x^{2}}$
9) $h(x)=x \cos \sqrt{x}$

Answer Key

1) $f(x)=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\cdots \frac{(-1)^{n} x^{4 n}}{(2 n)!}+\cdots$
2) $f(x)=x+\frac{x}{2}+\frac{x^{2}}{2^{2} \cdot 2!}+\frac{x^{3}}{2^{3} \cdot 3!}+\cdots \frac{x^{n}}{2^{n} \cdot n!}+\cdots$
3) $f(x)=\frac{x}{2}-\frac{x^{3}}{2^{3} \cdot 3!}+\frac{x^{5}}{2^{5} \cdot 5!}-\frac{x^{7}}{2^{7} \cdot 7!}+\cdots \frac{(-1)^{n} x^{2 n+1}}{2^{2 n+1}(2 n+1)!}+\cdots$
4) $f(x)=1+(x-1)+(x-1)^{2}+(x-1)^{3}+\cdots(x-1)^{n}+\cdots$
5) $f(x)=1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\cdots \frac{(-1)^{n+1} x^{n-1}}{n}+\cdots$
6) $f(x)=2 x-\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x^{3}}{3!}-\frac{2^{4} x^{4}}{4!}+\cdots \frac{(-1)^{n}(2 x)^{n+1}}{(n+1)!}+\cdots$
7) $f(x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots \frac{x^{2 n}}{(2 n)!}+\cdots$
8) $f(x)=3 x+3 x^{3}+3 x^{5}+3 x^{7}+\cdots 3 x^{2 n+1}+\cdots$
9) $f(x)=x-\frac{x^{2}}{2!}+\frac{x^{3}}{4!}-\frac{x^{4}}{6!}+\cdots \frac{(-1)^{n} x^{n+1}}{(2 n)!}+\cdots$
