Unit \#5: Improper Integrals
Topic: Double-Sided Improper Integrals
Objective: SWBAT integrate improper integrals with infinite discontinuities by using limits

Warm Up \#5:

Identify any points of discontinuity for each of the following and identify the type of discontinuity:
a) $f(x)=\frac{3 x}{2 x-6}$
b) $f(x)=\frac{x-1}{x^{2}-5}$
c) $f(x)=\frac{x^{2}-4}{x-2}$
d) $f(x)=\frac{x^{2}-9}{x^{2}-x-12}$

Evaluating Improper Integrals Case 2

Case 2: Integrands with Infinite Discontinuities

Another type of improper integral occurs when the integrand has a vertical asymptote at a limit of integration or at some point between the limits of integration. In order to evaluate these integrals, we use the following methods.

1) If $f(x)$ is continuous on (a, b] and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

2) If $f(x)$ is continuous on [a,b) and discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

3) If $f(x)$ is discontinuous at c, where $a<c<b$, and continuous on $[a, c) \cup$ $(c, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Example \#1:

Find the value of $\int_{0}^{1} \frac{d x}{\sqrt{x}}$

Example \#2:

Find the value of $\int_{1}^{2} \frac{1}{x-2} d x$

Example \#3:

Find the value of $\int_{0}^{2} \frac{d t}{(1-t)^{1 / 3}}$

Problem Set \#5: Find the value of each of the following integrals and determine whether they are converging or diverging.

1. $\int_{2}^{3} \frac{d t}{(3-t)^{2}}$
2. $\int_{-2}^{2} \frac{d x}{x^{2}}$
3. $\int_{0}^{1} \frac{1}{\sqrt[3]{x}} d x$
4. $\int_{0}^{1} \frac{1}{x^{3}} d x$
5. $\int_{0}^{2} \frac{d x}{(x-1)^{2 / 3}}$
6. $\int_{0}^{4} \frac{1}{\sqrt{4-x}} d x$
7. $\int_{0}^{1} \frac{x+1}{\sqrt{x^{2}+2 x}} d x$
8. $\int_{0}^{2} \frac{d x}{1-x^{2}}$
9. $\int_{0}^{\pi / 2} \frac{\sin x}{\sqrt{1-\cos x}} d x$
10. $\int_{0}^{\ln 2} y^{-2} e^{1 / y} d y$
11. $\int_{0}^{\pi / 2} \tan x d x$
12. $\int_{0}^{1} \ln x d x$

Answers:

1. D 2. D
2. $3 / 2$
3. D
4. 6
5. $4 \quad$ 7. $\sqrt{3}$
6. D
7. 2
8. D
9. D 12. -1
