Unit 5: Limits *Topic:* Infinite Limits *Objective: SWBAT use infinite limits to find vertical asymptotes.*

Warm Up #5:

- a) Graph (without a calculator) $f(x) = \frac{1}{x}$
- b) Find $\lim_{x\to 0^-} f(x)$
- c) Find $\lim_{x\to 0^+} f(x)$

Infinite Limits

Infinity is a very special idea. It is not a concrete number, but a really long never ending journey.

In general, we write symbolically

 $\lim_{x \to c} f(x) = \infty$ to indicate that the values of f(x) tend to become larger and larger

or

 $\lim_{x \to c} f(x) = -\infty$ to indicate that the values of f(x) tend to become smaller and smaller

This does not mean that we are regarding ∞ as a number. Nor does it mean that the limit exists. It simply expresses the particular way in which the limit does not exist.

Knowing where a particular function has vertical asymptotes will allow you to quickly evaluate limits at these *x*-values.

Example #1: For the function R whose graph is shown, state the following.

- (a) $\lim_{x \to 2} R(x)$ (b) $\lim_{x \to 5} R(x)$ (c) $\lim_{x \to 6} R(x)$ (d) $\lim_{x \to 6} R(x)$
- (c) $\lim_{x \to -3^-} R(x)$ (d) $\lim_{x \to -3^+} R(x)$
- (e) The equations of the vertical asymptotes.

Example #2: Find each of the following limits without a calculator.

a)
$$\lim_{x \to 1} \frac{(2-x)}{(x-1)^2}$$
 b) $\lim_{x \to -3^+} \frac{-2}{(x+3)}$ c) $\lim_{x \to 3^+} \left(x - 3 - \frac{1}{x-3}\right)$

Practice Problems:

- 1) For the function *f* whose graph is shown, state the following.
 - (a) $\lim_{x \to -7} f(x)$ (b) $\lim_{x \to -3} f(x)$ (c) $\lim_{x \to 0} f(x)$
 - (d) $\lim_{x \to 6^-} f(x)$ (e) $\lim_{x \to 6^+} f(x)$
 - (f) The equations of the vertical asymptotes.

2) Find the limit for each of the following:

AP Calculus Prep Unit 5 Lesson 5

