Unit #10: Applications of DifferentiationTopic: Second Derivative TestObjective: SWBAT describe the concavity of a function by using the second derivative.

Warm Up #5:

Let f be a function defined for all real numbers. The graph of f', the derivative of f, is shown above.

(a) Find all values of *x* at which *f* has a relative maximum. Justify your answer.

(b) Find all values of *x* at which *f* has a relative minimum. Justify your answer.

(c) Find all intervals on which the graph of *f* is increasing.

(d) Find all intervals on which the graph of *f* is decreasing.

If f' tells us how the y - values of a graph of f are changing, then the derivative of f', or f'', tells us how the **slopes** of f are changing.

Concavity and the 2nd Derivative Test

For a continuous function f(x) on an interval,

What does it sound like??	What does it look like??
If, then	10
f is AND	
If,	
then $(c, f(c))$ is a	10
If, then	10
<i>f</i> is	
AND	
If,	
then $(c, f(c))$ is a	10
An, in the domain of <i>f</i> , where the graph changes concavity	
is called an	and the point $(c, f(c))$ is a
A graph can also change its concavity at a of $f''(x)$ as long as the $x - value$ is in the domain of the function.	

Example #1: Given $f(x) = \frac{x^2}{x^2 + 3}$, find (i) where *f* is increasing/decreasing, (ii) any relative minimum/maximum points, and (iii) the interval of concavity and inflection points of *f*.

Example #2: Find the intervals of concavity and inflection points of $g(x) = \frac{1}{x-3}$.

Directions: For each of the following find (i) where f is increasing/decreasing, (ii) any relative minimum/maximum points, and (iii) the intervals of concavity and inflection points of f.

1) $f(x) = x^3 - 2x^2 - 2$ 2) $f(x) = xe^x$

Directions: For each of the following find the intervals of concavity and inflection points of *f*.

3)
$$f(x) = 4x^3 + 21x^2 + 36x - 20$$

4) $f(x) = -\frac{3}{16}(x-1)^{4/3} - \frac{3}{2}(x-1)^{1/3} + 2$

ANSWER KEY

