Unit \#10: Applications of Differentiation
Topic: Second Derivative Test
Objective: SWBAT describe the concavity of a function by using the second derivative.

Warm Up \#5:

Let f be a function defined for all real numbers. The graph of f^{\prime}, the derivative of f, is shown above.
(a) Find all values of x at which f has a relative maximum. Justify your answer.
(b) Find all values of x at which f has a relative minimum. Justify your answer.
(c) Find all intervals on which the graph of f is increasing.
(d) Find all intervals on which the graph of f is decreasing.

If f^{\prime} tells us how the y - values of a graph of f are changing, then the derivative of f^{\prime}, or $f^{\prime \prime}$, tells us how the slopes of f are changing.

Concavity and the $2^{\text {nd }}$ Derivative Test

For a continuous function $f(x)$ on an interval,

Example \#1: Given $f(x)=\frac{x^{2}}{x^{2}+3}$, find (i) where f is increasing/decreasing, (ii) any relative minimum/maximum points, and (iii) the interval of concavity and inflection points of f.

Example \#2: Find the intervals of concavity and inflection points of $g(x)=\frac{1}{x-3}$.

Directions: For each of the following find (i) where f is increasing/decreasing, (ii) any relative minimum/maximum points, and (iii) the intervals of concavity and inflection points of f.

1) $f(x)=x^{3}-2 x^{2}-2$
2) $f(x)=x e^{x}$

Directions: For each of the following find the intervals of concavity and inflection points of f.
3) $f(x)=4 x^{3}+21 x^{2}+36 x-20$
4) $f(x)=-\frac{3}{16}(x-1)^{4 / 3}-\frac{3}{2}(x-1)^{1 / 3}+2$

ANSWER KEY

1) (i) increasing $(-\infty, 0)\left(\frac{4}{3}, \infty\right)$ decreasing $\left(0, \frac{4}{3}\right)$
(ii) rel. $\min x=4 / 3$ and rel $\max x=0$
(iii) concave up $\left(\frac{2}{3}, \infty\right)$ concave down $\left(-\infty, \frac{2}{3}\right)$ and inflection pt. at $x=2 / 3$
2) (i) increasing $(-1, \infty)$ decreasing $(-\infty,-1)$
(ii) rel. $\min x=-1$
(iii) concave up $(-2, \infty)$ concave down $(-\infty,-2)$ and inflection pt. at $x=-2$
3) concave up $\left(-\frac{7}{4}, \infty\right)$ concave down $\left(-\infty,-\frac{7}{4}\right)$ and inflection pt. at $x=-7 / 4$
4) concave up $(1,5)$ concave down $(-\infty, 1)(5, \infty)$ and inflection pt. at $x=1$ and 5
