Unit \#4: Area and Volume
Topic: Finding the Volume of Solids of Revolution
Objective: SWBAT find the volume of a solid of revolution using the disk/washer methods.

Warm Up \#6:

Let R be the shaded region bounded by the graphs of $y=\sqrt{x}$ and $y=e^{3 x}$ and the vertical line $x=1$, as shown in the figure above.
(a) Find the area of R.
(b) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

A solid of revolution is obtained when a plane region is revolved about a fixed line, called the axis of revolution.

The disk/washer is a cylinder whose radii, R and r, represent the distances between the axis of revolution and the function. Thus,

Horizontal Axis of Revolution	Vertical Axis of Revolution
$V=\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x$	$V=\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d y$

Using these cylinders to find the volume for a given region is known as the disk/washer method.

Dealing with Disks:

Example \#1:

Using a calculator, find the volume of the solid generated by revolving about the line $y=-3$ the region bounded by the graph of $y=e^{x}$, the y-axis, the lines $x=\ln 2$ and $y=-3$.

Example \#2:

Find the volume of the solid generated when the region bounded by $y=x^{2}, x=2$, and the x-axis is rotated about the line $x=2$.

Problem Set \#6:

1. Find the volume of the solid generated by revolving about the x-axis the region bounded by the graph of $f(x)=\sqrt{x-1}$, the x-axis, and the line $x=5$.

2. Find the volume of the solid generated by revolving about the x-axis the region bounded by the graph of $y=\sqrt{\cos x}$ where $0 \leq x \leq \frac{\pi}{2}$, the x - axis, and the y-axis.

3. Find the volume of the solid generated by revolving about the y-axis the region in the first quadrant bounded by the graph of $y=x^{2}$, the y-axis, and the line $y=6$.

4. Using a calculator, find the volume of the solid generated by revolving about the line $y=8$ the region bounded by the graph of $y=x^{2}+4$, the line $y=8$.

5. Find the volume of the solid of revolution generated by revolving the region bounded by $y=\frac{1}{4} x^{2}, x=2$, and $y=0$ about the x-axis.

6. Find the volume of the solid of revolution generated by revolving the region bounded by $y=2 x^{2}, y=0$, and $x=2$ about the x-axis.

7. Find the volume of the region bounded by $y=x^{2}-2, y=-2$, and $x=2$ if it is rotated around line $y=-2$.

8. The region in the first quadrant bounded by the graph of $y=\sec x, x=\frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?

Answer Key:

1. 8π
2. π
3. 18π
4. $\frac{512}{15} \pi$
5. $\frac{2}{5} \pi$
6. $\frac{128}{5} \pi$
7. $\frac{32}{5} \pi$
8. π

Warm Up \#7:

Let R be the region bounded by the x-axis, the graph of $y=\sqrt{x}$, and the line $x=4$.
(a) Find the area of the region R.
(b) Find the value of h such that the vertical line $x=h$ divides the region R into two regions of equal area.
(c) Find the volume of the solid generated when R is revolved around the x-axis.
(d) The vertical line $x=k$ divides the region R into two regions such that when these two regions are revolved about the x-axis they generate solids with equal volumes. Find the value of k.

Now Let's Try Some Washers:

When the region being revolved is not in contact with the axis of revolution, we cannot generate disks. Instead we get a shape known as a washer, which is a disk with a hole in it.

To find the volume we subtract the area of the inner circle from the area of the outer circle.

Example \#3:

Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sqrt{x}$ and $y=x^{2}$ about the x-axis as shown below.

Example \#4:

Find the volume of the solid formed by revolving the region bounded by the graphs of $y=e^{-x}, y=x+1$, and $x=3$ about the line $y=4$.

Example \#5:

Find the volume of the solid of revolution generated by revolving the region bounded by $y=2 x^{2}, y=0$, and $x=2$ about the y-axis.

Problem Set \#7:

9) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\frac{1}{4} x^{2}$ and $y=5-x^{2}$ about the x-axis.

10) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y=6-2 x-x^{2}$ and $y=x+6$ about the line $y=3$.

11) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=x$ and $y=x^{2}-4 x+4$ about the line $y=4$.

12) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y=3 x, y=12-3 x$ and $y=0$ about the y-axis.

13) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y=x^{3}$ and $y=x$ in the first quadrant about the line $y=-2$.

14) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y=4-x^{2}, x=0$, and $y=0$ about the line $x=2$.

Answers Key: 9) $\frac{176}{3} \pi$
10) $\frac{108}{5} \pi$
11) $\frac{108}{5} \pi$
12) 48π
13) $\frac{25}{21} \pi \quad$ 14) $\frac{40}{3} \pi$

