Unit #4: Area and Volume *Topic:* Finding the Volume of Solids of Revolution *Objective: SWBAT find the volume of a solid of revolution using the disk/washer methods.*

Warm Up #6:

Let R be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and the vertical line x = 1, as shown in the figure above.

- (a) Find the area of R.
- (b) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

A *solid of revolution* is obtained when a plane region is revolved about a fixed line, called the *axis of revolution*.

The disk/washer is a cylinder whose radii , *R* and *r*, represent the distances between the axis of revolution and the function. Thus,

Horizontal Axis of Revolution	Vertical Axis of Revolution
$V = \pi \int_{a}^{b} (R^2 - r^2) dx$	$V = \pi \int_{a}^{b} (R^2 - r^2) dy$

Using these cylinders to find the volume for a given region is known as the **disk/washer method**.

Dealing with Disks: Example #1:

Using a calculator, find the volume of the solid generated by revolving about the line y = -3 the region bounded by the graph of $y = e^x$, the y - axis, the lines x = ln2 and y = -3.

Example #2:

Find the volume of the solid generated when the region bounded by $y = x^2$, x = 2, *and the* x - axis is rotated about the line x = 2.

Problem Set #6:

1. Find the volume of the solid generated by revolving about the *x*-axis the region bounded by the graph of $f(x) = \sqrt{x-1}$, the x - axis, and the line x = 5.

2. Find the volume of the solid generated by revolving about the x - axis the region bounded by the graph of $y = \sqrt{cosx}$ where $0 \le x \le \frac{\pi}{2}$, the x - axis, and the y - axis.

3. Find the volume of the solid generated by revolving about the y - axis the region in the first quadrant bounded by the graph of $y = x^2$, the y - axis, and the line y = 6.

4. Using a calculator, find the volume of the solid generated by revolving about the line y = 8 the region bounded by the graph of $y = x^2 + 4$, the line y = 8.

ТТ	TTT	ПТ	TTT	T.	ПТ	ПТ	TTT	TTT
++	+++	+++	+++	++++	+++	+++	+++	+++
H	+++	+++	+++				+++	+++
11		111	+++				+++	++++
H	+++	+++	+++	++++	+++	+++	+++	+++
Ħ			+++					
11	+++	+++	+++		+++	+++	+++	+++
++	+++		+++				+++	+++
11	+++		++++				111	
++	+++	+++	+++	++++	+++	+++	+++	+++
				_				

5. Find the volume of the solid of revolution generated by revolving the region bounded by $y = \frac{1}{4}x^2$, x = 2, and y = 0 about the x - axis.

6. Find the volume of the solid of revolution generated by revolving the region bounded by $y = 2x^2$, y = 0, and x = 2 about the x - axis.

7. Find the volume of the region bounded by $y = x^2 - 2$, y = -2, and x = 2 if it is rotated around line y = -2.

8. The region in the first quadrant bounded by the graph of y = secx, $x = \frac{\pi}{4}$, and the axes is rotated about the x - axis. What is the volume of the solid generated?

TT	TT	TTT	TTT	+	TTT	TTT	TTT	TT
								tt
11	111	111			111	111	111	
11	111	111			111	111	111	11
++	+++	+++			+++	+++	+++	
++	+++	+++			+++	+++	+++	
++	+++	+++	+++		+++	+++	+++	++
++	+++	+++	+++		+++	+++	+++	++
++	+++	++++				+++		++
++	+++	+++						H.
-		111	111				111	11
++		111			+++		111	++
_		_		_		_		
								11
								Ħ
								Ħ

Answer Key:

1.
$$8\pi$$
 2. π 3. 18π 4. $\frac{512}{15}\pi$ 5. $\frac{2}{5}\pi$
6. $\frac{128}{5}\pi$ 7. $\frac{32}{5}\pi$ 8. π

Warm Up #7:

Let *R* be the region bounded by the *x* –axis , the graph of $y = \sqrt{x}$, and the line x = 4.

- (a) Find the area of the region *R*.
- (b) Find the value of *h* such that the vertical line x = h divides the region *R* into two regions of equal area.
- (c) Find the volume of the solid generated when *R* is revolved around the x –axis.
- (d) The vertical line x = k divides the region R into two regions such that when these two regions are revolved about the x -axis they generate solids with equal volumes. Find the value of k.

Now Let's Try Some Washers:

When the region being revolved is not in contact with the axis of revolution, we cannot generate disks. Instead we get a shape known as a washer, which is a disk with a hole in it.

To find the volume we subtract the area of the inner circle from the area of the outer circle.

Example #3:

Find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$ and $y = x^2$ about the x - axis as shown below.

 $R = \sqrt{x} \begin{cases} y = \sqrt{x} \\ 0, 0 \end{cases}$ $y = x^{2}$ $y = x^{2}$

Example #4:

Find the volume of the solid formed by revolving the region bounded by the graphs of $y = e^{-x}$, y = x + 1, and x = 3 about the line y = 4.

Example #5:

Find the volume of the solid of revolution generated by revolving the region bounded by $y = 2x^2$, y = 0, and x = 2 about the y - axis.

Problem Set #7:

9) Find the volume of the solid formed by revolving the region bounded by the graphs of $y = \frac{1}{4}x^2$ and $y = 5 - x^2$ about the x - axis.

10) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y = 6 - 2x - x^2$ and y = x + 6 about the line y = 3.

11) Find the volume of the solid formed by revolving the region bounded by the graphs of y = x and $y = x^2 - 4x + 4$ about the line y = 4.

12) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of y = 3x, y = 12 - 3x and y = 0 about the y - axis.

13) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y = x^3$ and y = x in the first quadrant about the line y = -2.

14) Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of $y = 4 - x^2$, x = 0, and y = 0 about the line x = 2.

<u>Answers Key</u>: 9) $\frac{176}{3}\pi$ 10) $\frac{108}{5}\pi$ 11) $\frac{108}{5}\pi$ 12) 48π 13) $\frac{25}{21}\pi$ 14) $\frac{40}{3}\pi$