Unit \#2: Methods of Integration
Topic: Integration by Parts Formula
Objective: SWBAT evaluate an integral involving the product of two functions by using the integration by parts formula.

Warm Up \#6:

a) What are some of the common mistakes that could occur when answering the following question?

$$
\text { "If } f(x)=2 x \sin x-x^{2} \cos x+2 \cos x+3, \text { find } f^{\prime}(x) . "
$$

b) What is the actual answer to the problem given above?
c) Why couldn't we use a u-sub to integrate the answer found in part b?

Integration by Parts is the "product rule" for integration. Just like integration by u-substitution, it is intended to split one complicated function into two easier ones.

Substitution looks for \qquad ;
integration by parts looks for \qquad of two unrelated functions.

For example: $\int x^{2} \sin x d x$
If u and v are functions of x and have continuous derivatives, then we can integrate using the formula:

The goal is to create an expression that contains an integral that is much easier to integrate than the original. When choosing u and $d v$, we want to find a u that will be simplified after we take its derivative, and a $d v$ that won't be too complex after integrating it.

When deciding what to choose for u, remember L I P E T.

$$
\begin{aligned}
& \mathbf{L} \text { - logarithmic function } \\
& \mathbf{I} \text { - inverse trig function } \\
& \mathbf{P} \text { - polynomial function } \\
& \mathbf{E} \text { - exponential function } \\
& \mathbf{T} \text { - trigonometry function }
\end{aligned}
$$

This is usually the preference order in which you would want to choose u.

Ok, Now let's try to integrate

$$
\int u d v=u v-\int v d u
$$

Example \#1: $\int x^{2} \sin x d x$

Example \#2: $\quad \int \ln x d x$

Example \#3: $\quad \int 4 \sin ^{-1} x d x$

Problem Set \#6: Integrate each of the following using the integration by parts formula.

1) $\int x^{5} \ln x d x$	2) $\int x \csc ^{2} x d x$
3) $\int\left(x^{2}+1\right) e^{-x} d x$	4) $\int 2 x e^{4 x} d x$

7) $\int 3 x^{2} e^{2 x} d x$
8) $\int 3 \arctan x d x$
9) $\int x \sec ^{2} x d x$
10) $\int \sqrt{x} \ln x d x$

Answer Key

1) $\frac{1}{6} x^{6} \ln \|x\|-\frac{1}{36} x^{6}+C$	2) $-x \cot x+\ln \|\sin x\|+C$
3) $-e^{-x}\left(x^{2}+1\right)-2 x e^{-x}-2 e^{-x}+C$	4) $\frac{1}{2} x e^{4 x}-\frac{1}{8} e^{4 x}+C$
5) $2 x^{2} \sin \frac{1}{2} x+8 x \cos \frac{1}{2} x-16 \sin \frac{1}{2} x+C$	6) $-\frac{\ln \|x\|}{x}-\frac{1}{x}+C$
7) $\frac{3}{2} x^{2} e^{2 x}-\frac{3}{2} x e^{2 x}-\frac{3}{2} e^{2 x}+C$	8) $3 x \arctan x-\frac{3}{2} \ln \left\|1+x^{2}\right\|+C$
9) $x \tan x+\ln \|\cos x\|+C$	10) $\frac{2}{3} x^{3 / 2} \ln \|x\|-\frac{4}{9} x^{3 / 2}+C$

