*Unit #3:* Trigonometry

Topic: Proving Trigonometric Identities

Objective: SWBAT prove that a trigonometric identity is true.

## Warm Up #6:

If 
$$x = \frac{5\pi}{6}$$
, show that  $sec^2xtan^2x + sec^2x = sec^4x$ .

#### Proving Trigonometric Identities:

# Remember an identity is an equation that is true for all defined values of a variable.

We are going to use the identities that we have already established to "prove" or establish other identities.

### **Guidelines for Proving/Verifying Identities:**

| 1. | Start with the       | side of the equation.       |
|----|----------------------|-----------------------------|
| 2. | an expression, add   | ,a binomial, or             |
|    | create a             | _ denominator, if possible. |
| 3. | Use the              | , whenever possible.        |
| 4. | Convert all terms to | and                         |
| 5. | Always try           | ·                           |

### Example #1: Prove $cot^2x - cos^2x = cot^2x cos^2x$

Example #2: Prove 
$$\frac{cscx + secx}{sinx + cosx} = cotx + tanx$$

Problem Set #6: Prove each of the following trig identities.

| 1) $sec^2xcotx - cotx = tanx$ | $2) \ sinxcscx - cos^2x = sin^2x$ |
|-------------------------------|-----------------------------------|
|                               |                                   |
|                               |                                   |
|                               |                                   |
|                               |                                   |
|                               |                                   |
|                               |                                   |
|                               |                                   |
|                               |                                   |
|                               |                                   |

3) 
$$(tan^2y + 1)(cos^2y - 1) = -tan^2y$$

 $4) \cos x(\tan^2 x + 1) = \sec x$ 

5) 
$$\sin^3\theta + \sin\theta\cos^2\theta = \sin\theta$$

6)  $\sin^4 x - \cos^4 x = 2\sin^2 x - 1$ 

$$7) \frac{\sec^2 x - 1}{\sec^2 x} = \sin^2 x$$

8)  $\frac{sint}{1+cost} + \frac{1+cost}{sint} = 2csct$ 

| 9) | $2cos^2y-sin^2y+1$ | = 3cosy |
|----|--------------------|---------|
| 9) | cosy               | -3003y  |

10) (secx - tanx)(cscx + 1) = cotx

11) 
$$\frac{cscx + cotx}{tanx + sinx} = cotxcscx$$

12)  $\frac{1}{1 - secx} + \frac{1}{1 + secx} = -2cot^2x$ 



Assignment(s): Finish packet #1-12