Unit \#1: Integration Review
Topic: Area under the Curve
Objective: SWBAT solve various free response problems using their knowledge of integration.

Warm Up \#7:

1) Suppose $\int_{1}^{2} f(x) d x=-4, \int_{1}^{5} f(x) d x=6, \int_{1}^{5} g(x) d x=8$, and $\int_{5}^{9} g(x) d x=-2$, find
a) $\int_{2}^{5} f(x) d x=$
b) $\int_{1}^{2} 3 f(x) d x=$
c) $\int_{1}^{9} g(x) d x=$
2) For what value of $k, k>0$ will the average value of $y=4-x^{2}$ on the closed interval $[0, k]$ be -8 ?

OK, so let's put it all together now.

1) $2013 \mathrm{AB} \# 4$

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the

Graph of f^{\prime} closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
2) $2012 \mathrm{AB} \# 3$

Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each
 Graph of f of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.
3) $2010 \mathrm{AB} \# 5$

Graph of g^{\prime}
The function g is defined and differentiable on the closed interval $[-7,5]$ and satisfies $g(0)=5$. The graph of $y=g^{\prime}(x)$, the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find $g(3)$ and $g(-2)$.
(b) Find the x-coordinate of each point of inflection of the graph of $y=g(x)$ on the interval $-7<x<5$. Explain your reasoning.

4) $2011 \mathrm{AB} \# 4$

The continuous function f is defined on the interval $-4 \leq x \leq 3$.
The graph of f consists of two quarter circles and one line segment, as shown in the figure above.
Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$. Justify your answer.

Graph of f
(d) Find the average rate of change of f on the interval $-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.
5) 2014 AB \#3

The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure above.
Let g be the function defined by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(3)$.
(b) On what open intervals contained in $-5<x<4$ is the graph of g both increasing and concave down? Give a reason for your answer.
(c) The function h is defined by $h(x)=\frac{g(x)}{5 x}$. Find $h^{\prime}(3)$.
(d) The function p is defined by $p(x)=f\left(x^{2}-x\right)$. Find the slope

Graph of f of the line tangent to the graph of p at the point where $x=-1$.

