Unit \#6: Parametric and Polar Derivatives
Topic: Polar Derivatives
Objective: SWBAT write the equation of the tangent line to a polar curve by using the formula for a polar derivative.

Warm Up \#7:

1) Find the rectangular coordinates for the points with the given polar coordinates.
a) $\left(16, \frac{5 \pi}{6}\right)$
b) $\left(-\sqrt{2},-\frac{\pi}{4}\right)$
2) Find two different sets of polar coordinates for the points with given rectangular coordinates.
a) $(0,-4)$
b) $(1, \sqrt{3})$
The Slope of @ Pol@p Cupve

Using the method for finding the slope of a parametric curve and the Product Rule we can find the derivative of a Polar Curve.

$\frac{d y}{d x}=$

Example \#1:

Find the slope of the curve $r=2+3 \sin \theta$ at the point where $\theta=\frac{3 \pi}{4}$.

Example \#2:

Find the slope of the curve $r=2 \sin 3 \theta$ at the point where $\theta=\frac{\pi}{6}$ and use it to find the equation of the tangent line to the curve at this point.

Problem Set \#7:

Write the equation of the tangent line to each of the following curves at the indicated point.

1) $r=3(1-\cos \theta) ; \quad \theta=\frac{\pi}{2}$
2) $r=\cos 2 \theta ; \quad \theta=-\frac{\pi}{2}$
3) $r=2-3 \sin \theta ; \theta=\pi$
4) $r=4 \sin \theta ; \quad \theta=\frac{\pi}{3}$
5) $r=2 \sin (3 \theta) ; \quad \theta=\frac{\pi}{4}$
6) $r=2(1+\cos \theta) ; \quad \theta=\frac{\pi}{6}$

Example \#3:

Find all the points on the graph of $r=1-\sin \theta$ where the tangent lines to the graph are
a) horizontal
b) vertical

Problem Set \#8:

7) Find all the points on the interval $0 \leq \theta \leq 2 \pi$ at which the tangent lines to the graph of the curve $r=2-2 \cos \theta$ are horizontal and vertical. Give your answer in the polar form (r, θ).
8) At what point(s) on the graph of $r=-5 \sin \theta$ is the tangent line (a) vertical and (b) horizontal?
9) Find all angles on the interval $[0,2 \pi)$ at which the tangent line to the graph of the polar equation $r=2 \csc \theta+3$ is horizontal.

Answers

1) $y-3=-x$
2) $y=-1$
3) $y=\frac{2}{3}(x+2)$
4) $y-3=-\sqrt{3}(x-\sqrt{3})$
5) $y-1=\frac{1}{2}(x+1)$
6) $y-\left(1+\frac{\sqrt{3}}{2}\right)=-(x-(\sqrt{3}+3)$
7) Horizontal $\left(3, \frac{2 \pi}{3}\right)\left(3, \frac{4 \pi}{3}\right) \quad \operatorname{Vertical}\left(1, \frac{\pi}{3}\right)\left(1, \frac{5 \pi}{3}\right)(4, \pi)$
8) Vertical $\left(\frac{-5 \sqrt{2}}{2}, \frac{\pi}{4}\right)\left(\frac{-5 \sqrt{2}}{2}, \frac{3 \pi}{4}\right)\left(\frac{5 \sqrt{2}}{2}, \frac{5 \pi}{4}\right)\left(\frac{5 \sqrt{2}}{2}, \frac{7 \pi}{4}\right)$

Horizontal POLE, $\left(-5, \frac{\pi}{2}\right)\left(5, \frac{3 \pi}{2}\right)(0, \pi)(0,2 \pi)$
9) $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$

