Parametric Equations Review

CALCULATOR ALLOWED

Directions: Read each question carefully and show ALL work.

1. What is the slope of the line segment, in the xy -plane, given by the parametric equations x = 3t + 4 and y = 7t - 1, for $-2 \le t \le 5$.

2. The velocity of a particle moving in the xy –plane at any time, $0 \le t \le 2\pi$, is given by the parametric equations $\frac{dx}{dt} = cost$ and $\frac{dy}{dt} = -2sin$ (2*t*). For what value(s) of *t* is the particle at rest?

- 3. The velocity of a particle moving on a curve is given by, $v = \langle cos(3t), e^{2t} \rangle$. When t = 0, the particle is at point (0,1).
 - (a) Find the position vector at time *t*.
 - (b) Find the acceleration vector at time *t*.

$$\frac{dx}{dt} = \cos(t^3)$$
 and $\frac{dy}{dt} = 3\sin(t^2)$

for $0 \le t \le 3$. At time t = 2, the object is at position (4,5).

- (a) Write an equation for the line tangent to the curve at (4,5).
- (b) Find the speed of the object at time t = 2.
- (c) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
- (d) Find the position of the object at time t = 3.

5. Find the point at which the tangent to the curve defined parametrically by x = 4cost and y = 9sint, is (a) horizontal; (b) vertical.

6. Find the length of the curve given by $x = \frac{1}{3}t^3$ and $y = \frac{1}{2}t^2$ from $0 \le t \le 4$.

7. Write an integral that can be used to find the length of the path described by the parametric equations $x = 2cos^3 t$ and $y = 2sin^3 t$ for $0 \le t \le 2\pi$.

8. The path of a particle is given for the time $t \ge 0$ is given by $x = t^2 - 2$ and $y = \frac{2}{5}t^3$.

(a) Find
$$\frac{dy}{dx}$$
 when $t = 2$.

(b) Find $\frac{d^2y}{dx^2}$ when x = 7.

- 9.
- An object moving along a curve in the xy-plane has position (x(t), y(t)) at time $t \ge 0$ with $\frac{dx}{dt} = 3 + \cos(t^2)$. The derivative $\frac{dy}{dt}$ is not explicitly given. At time t = 2, the object is at position (1, 8).
- (a) Find the x-coordinate of the position of the object at time t = 4.
- (b) At time t = 2, the value of $\frac{dy}{dt}$ is -7. Write an equation for the line tangent to the curve at the point (x(2), y(2)).
- (c) Find the speed of the object at time t = 2.
- (d) For $t \ge 3$, the line tangent to the curve at (x(t), y(t)) has a slope of 2t + 1. Find the acceleration vector of the object at time t = 4.

10. Write the equation of the tangent line to the graph of $r = 4\theta$ at the point $\left(2, \frac{3\pi}{2}\right)$.

- 11. Find any point(s) at which the tangent to the curve defined by $r = 1 + sin\theta$ from $0 \le \theta \le 2\pi$ is
 - (a) horizontal

(b) vertical.

12) A curve in the plane is defined parametrically by the equations $x = \frac{1}{2}t^3 - 6t$ and $y = 2t^4 + 3t^2$. An equation of the line normal to the curve at t = 1 is

Answers

1. 7/3
2.
$$t = \frac{\pi}{2}, \frac{3\pi}{2}$$

3.a) $\langle \frac{1}{3}sin(3t), \frac{1}{2}e^{2t} + \frac{1}{2} \rangle$ b) $\langle -3sin(3t), 2e^{2t} \rangle$
4.a) $y - 5 = 15.604(x - 4)$ b) 2.275 c) 1.458 d) (3.954, 4.906)
5.a) (0,9) (0,-9) b) (4,0) (-4,0) 6. $\frac{17\sqrt{17} - 1}{3}$
7. $\int_{0}^{2\pi}\sqrt{36cos^{2}tsin^{2}t} dt$ or $\int_{0}^{2\pi}6|costsint|dt$
8.a) 6/5 b) 1/10
9.a) 7.133 b) $y - 8 = -2.983(x - 1)$ c) 7.383 d) $\langle 2.303, 24.814 \rangle$
10. $y + 2 = -\frac{2}{3\pi}x$
11.a) $(2, \frac{\pi}{2}), (\frac{1}{2}, \frac{7\pi}{6}), (\frac{1}{2}, \frac{11\pi}{6})$ b) $(\frac{3}{2}, \frac{\pi}{6})(\frac{3}{2}, \frac{5\pi}{6})$
12. $y - 5 = \frac{9}{28}(x + \frac{11}{2})$