Parametric Equations Review

CALCULATOR ALLOWED

Directions: Read each question carefully and show ALL work.

1. What is the slope of the line segment, in the $x y$-plane, given by the parametric equations $x=3 t+4$ and $y=7 t-1$, for $-2 \leq t \leq 5$.
2. The velocity of a particle moving in the $x y$-plane at any time, $0 \leq t \leq 2 \pi$, is given by the parametric equations $\frac{d x}{d t}=\operatorname{cost}$ and $\frac{d y}{d t}=-2 \sin (2 t)$. For what value(s) of t is the particle at rest?
3. The velocity of a particle moving on a curve is given by, $v=\left\langle\cos (3 t), e^{2 t}\right\rangle$. When $t=0$, the particle is at point $(0,1)$.
(a) Find the position vector at time t.
(b) Find the acceleration vector at time t.
4. An object moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time t with

$$
\frac{d x}{d t}=\cos \left(t^{3}\right) \text { and } \frac{d y}{d t}=3 \sin \left(t^{2}\right)
$$

for $0 \leq t \leq 3$. At time $t=2$, the object is at position (4,5).
(a) Write an equation for the line tangent to the curve at $(4,5)$.
(b) Find the speed of the object at time $t=2$.
(c) Find the total distance traveled by the object over the time interval $0 \leq t \leq 1$.
(d) Find the position of the object at time $t=3$.
5. Find the point at which the tangent to the curve defined parametrically by $x=4 \operatorname{cost}$ and $y=9 \operatorname{sint}$, is (a) horizontal; (b) vertical.
6. Find the length of the curve given by $x=\frac{1}{3} t^{3}$ and $y=\frac{1}{2} t^{2}$ from $0 \leq t \leq 4$.
7. Write an integral that can be used to find the length of the path described by the parametric equations $x=2 \cos ^{3} t$ and $y=2 \sin ^{3} t$ for $0 \leq t \leq 2 \pi$.
8. The path of a particle is given for the time $t \geq 0$ is given by $x=t^{2}-2$ and $y=\frac{2}{5} t^{3}$.
(a) Find $\frac{d y}{d x}$ when $t=2$.
(b) Find $\frac{d^{2} y}{d x^{2}}$ when $x=7$.
9.

An object moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time $t \geq 0$ with $\frac{d x}{d t}=3+\cos \left(t^{2}\right)$. The derivative $\frac{d y}{d t}$ is not explicitly given. At time $t=2$, the object is at position $(1,8)$.
(a) Find the x-coordinate of the position of the object at time $t=4$.
(b) At time $t=2$, the value of $\frac{d y}{d t}$ is -7 . Write an equation for the line tangent to the curve at the point $(x(2), y(2))$.
(c) Find the speed of the object at time $t=2$.
(d) For $t \geq 3$, the line tangent to the curve at $(x(t), y(t))$ has a slope of $2 t+1$. Find the acceleration vector of the object at time $t=4$.
10. Write the equation of the tangent line to the graph of $r=4 \theta$ at the point ($2, \frac{3 \pi}{2}$).
11. Find any point(s) at which the tangent to the curve defined by $r=1+\sin \theta$ from $0 \leq \theta \leq 2 \pi$ is
(a) horizontal
(b) vertical.
12) A curve in the plane is defined parametrically by the equations $x=\frac{1}{2} t^{3}-6 t$ and $y=2 t^{4}+3 t^{2}$. An equation of the line normal to the curve at $t=1$ is

Answers

1. $7 / 3$
2. $t=\frac{\pi}{2}, \frac{3 \pi}{2}$
3.a) $\left\langle\frac{1}{3} \sin (3 t), \frac{1}{2} e^{2 t}+\frac{1}{2}\right\rangle$
b) $\left\langle-3 \sin (3 t), 2 e^{2 t}\right\rangle$
4.a) $y-5=15.604(x-4)$
b) 2.275
c) 1.458
5.a) $(0,9)(0,-9)$
b) $(4,0)(-4,0)$
3. $\frac{17 \sqrt{17}-1}{3}$
d) $(3.954,4.906)$
4. $\int_{0}^{2 \pi} \sqrt{36 \cos ^{2} \operatorname{tsin}^{2} t} d t$ or $\int_{0}^{2 \pi} 6 \mid$ costsint $\mid d t$
8.a) $6 / 5 \quad$ b) $1 / 10$
9.a) 7.133
b) $y-8=-2.983(x-1)$
c) 7.383
d) $\langle 2.303,24.814\rangle$
5. $y+2=-\frac{2}{3 \pi} x$
11.a) $\left(2, \frac{\pi}{2}\right),\left(\frac{1}{2}, \frac{7 \pi}{6}\right),\left(\frac{1}{2}, \frac{11 \pi}{6}\right) \quad$ b) $\left(\frac{3}{2}, \frac{\pi}{6}\right)\left(\frac{3}{2}, \frac{5 \pi}{6}\right)$
6. $y-5=\frac{9}{28}\left(x+\frac{11}{2}\right)$
