Unit: Taylor Polynomials and Power Series

Topic: Taylor Polynomial and Power Series Review

Objective: SWBAT repair the skills needed to answer questions on Taylor Polynomials and Power Series for the upcoming exam.

Directions: Read each question carefully and show all work.

- 1) Let f be a function that has derivatives of all orders for all real numbers. Assume f(0) = 5, f'(0) = -3, f''(0) = 1, and f'''(0) = 4.
 - (a) Write the third–degree Taylor polynomial for f about x = 0 and use it to approximate f(0.2).
 - (b) Write the fourth-degree Taylor polynomial for g, where $g(x) = f(x^2)$, about x = 0.
 - (c) Write the third–degree Taylor polynomial for h, where $h(x) = \int_0^x f(t) dt$, about x = 0.

- 2) Suppose the function f(x) is approximated near x = 0 by a sixth-degree Taylor polynomial $P_6(x) = 3x 4x^3 + 5x^6$. Give the value of each of the following:
 - a) f(0)
- b) f'(0)
- c) f'''(0)

- d) $f^5(0)$
- e) $f^{6}(0)$

- 3) The function f has derivatives of all orders for all real numbers x. Assume f(2) = -3, f'(2) = 5, f''(2) = 3, and f'''(2) = -8.
 - (a) Write the third-degree Taylor polynomial for f about x=2 and use it to approximate f(1.5).
 - (b) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \leq 3$ for all x in the closed interval [1.5, 2]. Use the Lagrange error bound on the approximation to f(1.5) found in part (a) to explain why $f(1.5) \neq -5$.
 - (c) Write the fourth–degree Taylor polynomial, P(x), for $g(x) = f(x^2 + 2)$ about x = 0. Use P to explain why g must have a relative minimum at x = 0.

- 4) Let $f(x) = cos(2x) 1 + 2x^2$.
 - a) Find the first two non-zero terms in the Maclaurin series expansion of f.

b) Using the expansion found in part (a) compute: $\lim_{x\to 0} \frac{\cos(2x)-1+2x^2}{x^4}$

5) The Maclaurin series for the function f is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{(2x)^{n+1}}{n+1} = 2x + \frac{4x^2}{2} + \frac{8x^3}{3} + \frac{16x^4}{4} + \dots + \frac{(2x)^{n+1}}{n+1} + \dots$$

on its interval of convergence.

- a) Find the interval of convergence of the Maclaurin series for f. Justify your answer.
- b) Find the first four terms and the general term for the Maclaurin series for f'(x).
- c) Use the Maclaurin series you found in part (b) to find the value of $f'\left(-\frac{1}{3}\right)$.

6) Find the first four nonzero terms and the general term for the Macluarin series for $\int_0^x cost^2 dt$.

7) a	a)	Write the Taylor series expansion about $x = 0$ for $f(x) = ln(1 + x^2)$. Include an
		expression for the general term.

b) For what values of *x* does the series in part (a) converge?

c) Estimate the error in evaluating $ln\left(\frac{13}{9}\right)$ by using only the first four nonzero terms of the series in part (a). Justify your answer.

8) a) Suppose a function f is approximated with a fifth-degree Taylor polynomial about x=2. If the maximum value of the sixth derivative between x=2 and x=5 is 0.25, that is $|f^{(6)}(x)| < 0.25$, then find the maximum error incurred using the approximation to compute f(5).

b) Suppose $P_5(5) = 3.618$. Use your answer to (a) to find an interval in which f(5) must reside.

c) Could f(5) = 3.725? Why or why not?

- 9) The function f has a Taylor series about x=2 that converges to f(x) for all x in the interval of convergence. The nth derivative of f at x=2 is given by $f^{(n)}(2)=\frac{(n+1)!}{3^n}$ for $n \ge 1$, and f(2)=1.
 - (a) Write the first four terms and the general term of the Taylor series for f about x=2.
 - (b) Find the radius of convergence for the Taylor series for f about x = 2. Show the work that leads to your answer.
 - (c) Let g be a function satisfying g(2) = 3 and g'(x) = f(x) for all x. Write the first four terms and the general term of the Taylor series for g about x = 2.
 - (d) Does the Taylor series for g as defined in part (c) converge at x = -2? Give a reason for your answer.

- 10) Consider the power series $\sum_{n=0}^{\infty} a_n x^n$, where $a_0 = 1$ and $a_n = \left(\frac{7}{n}\right) a_{n-1}$ for $n \ge 1$.
 - (a) Find the first four terms and the general term of the series.
 - (b) For what values of *x* does the series converge?
 - (c) If $f(x) = \sum_{n=0}^{\infty} a_n x^n$, find the value of f'(1).

Answer Key

1) a) 4.425

b) $P_4(x) = 5 - 3x^2 + \frac{1}{2}x^4$

c) $P_3(x) = 5x - \frac{3}{2}x^2 + \frac{1}{6}x^3$

2) a) 0 b) 3 c) -24 d) 0 e) 3600

3) a) $-\frac{119}{24}$

b) $error \le \frac{1}{128}$, -4.966 < f(1.5) < -4.951

c) $P(x) = -3 + 5x^2 + \frac{3}{2}x^4$

4) a) $f(x) = \frac{2}{3}x^4 - \frac{4}{45}x^6$

b) 2/3 5) a) $-\frac{1}{2} \le x < \frac{1}{2}$

b) $f'(x) = 2 + 4x + 8x^2 + 16x^3 + \dots + 2(2x)^n + \dots$

c) 6/5

6) $x - \frac{x^5}{5(2!)} + \frac{x^9}{9(4!)} - \frac{x^{13}}{13(6!)} + \cdots + \frac{(x^2)^{2n+1}}{(2n+1)!} + \cdots$

7) a) $\ln(1+x^2) = x^2 - \frac{x^4}{2} + \frac{x^6}{2} - \frac{x^8}{4} + \dots + \frac{(-1)^{n+1}x^{2n}}{2} + \dots$ b) $-1 \le x \le 1$ c) .000000006

8) a) .253125

b) $3.365 \le f(5) \le 3.871$

9) a) $f(x) = 1 + \frac{2}{3}(x-2) + \frac{3}{3^2}(x-2)^2 + \frac{4}{3^3}(x-2)^3 + \cdots + \frac{n+1}{3^n}(x-2)^n + \cdots$

c) $g(x) = 3 + (x-2) + \frac{1}{2}(x-2)^2 + \frac{1}{2^2}(x-2)^3 + \cdots + \frac{1}{2^n}(x-2)^{n+1} + \cdots$

d) no, interval of convergence is -1 < x < 5

10) a) $1 + 7x + \frac{7^2x^2}{2!} + \frac{7^3x^3}{3!} + \cdots + \frac{(7x)^n}{n!} + \cdots$

b) converges for all real numbers

c) $f'(1) = 7e^7$